
Brian B Graham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1216789/publications.pdf Version: 2024-02-01

RDIAN R C.DAHAM

#	Article	IF	CITATIONS
1	Rationale and design of a screening study to detect schistosomiasisâ€associated pulmonary hypertension in Ethiopia and Zambia. Pulmonary Circulation, 2022, 12, e12072.	0.8	2
2	Experimental Schistosoma japonicum-induced pulmonary hypertension. PLoS Neglected Tropical Diseases, 2022, 16, e0010343.	1.3	4
3	Peripheral Blood Inflammation Profile of Patients with Pulmonary Arterial Hypertension Using the High-Throughput Olink Proteomics Platform. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 580-581.	1.4	2
4	Contribution of fatty acid oxidation to the pathogenesis of pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 323, L355-L371.	1.3	8
5	The role of macrophages in right ventricular remodeling in experimental pulmonary hypertension. Pulmonary Circulation, 2022, 12, .	0.8	3
6	Arterial vascular volume changes with haemodynamics in schistosomiasis-associated pulmonary arterial hypertension. European Respiratory Journal, 2021, 57, 2003914.	3.1	3
7	Two Birds with One Stone: Helping the Pulmonary Arteries and the Right Ventricle by Targeting BMPR2 Signaling. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 233-235.	1.4	Ο
8	Endothelial cell PHD2-HIF1α-PFKFB3 contributes to right ventricle vascular adaptation in pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L675-L685.	1.3	7
9	Interleukin-6 mediates neutrophil mobilization from bone marrow in pulmonary hypertension. Cellular and Molecular Immunology, 2021, 18, 374-384.	4.8	36
10	Interstitial macrophage-derived thrombospondin-1 contributes to hypoxia-induced pulmonary hypertension. Cardiovascular Research, 2020, 116, 2021-2030.	1.8	34
11	Sex-derived attributes contributing to SARS-CoV-2 mortality. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E562-E567.	1.8	55
12	Schistosomiasis Pulmonary Arterial Hypertension. Frontiers in Immunology, 2020, 11, 608883.	2.2	22
13	Pathophysiology and potential future therapeutic targets using preclinical models of COVID-19. ERJ Open Research, 2020, 6, 00405-2020.	1.1	12
14	Exploring New Therapeutic Pathways in Pulmonary Hypertension. Metabolism, Proliferation, and Personalized Medicine. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 279-292.	1.4	8
15	Stable isotope metabolomics of pulmonary artery smooth muscle and endothelial cells in pulmonary hypertension and with TGF-beta treatment. Scientific Reports, 2020, 10, 413.	1.6	24
16	Finding the Target:In Silicoand Genetic Screening for Mechanistically Novel Drugs in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 9-11.	2.5	12
17	IL-6Ra in Smooth Muscle Cells Protects against <i>Schistosoma</i> - and Hypoxia-induced Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 123-126.	1.4	5
18	A retrospective study of schistosomiasis-associated pulmonary hypertension from an endemic area in Brazil. IJC Heart and Vasculature, 2019, 24, 100387.	0.6	1

#	Article	IF	CITATIONS
19	Th2 CD4 ⁺ T Cells Are Necessary and Sufficient for <i>Schistosomaâ€</i> Pulmonary Hypertension. Journal of the American Heart Association, 2019, 8, e013111.	1.6	27
20	Suppression of HIF2 signalling attenuates the initiation of hypoxia-induced pulmonary hypertension. European Respiratory Journal, 2019, 54, 1900378.	3.1	68
21	BOLA (BolA Family Member 3) Deficiency Controls Endothelial Metabolism and Glycine Homeostasis in Pulmonary Hypertension. Circulation, 2019, 139, 2238-2255.	1.6	54
22	The Role of Type 2 Inflammation in Schistosoma-Induced Pulmonary Hypertension. Frontiers in Immunology, 2019, 10, 27.	2.2	17
23	Hot topics in the mechanisms of pulmonary arterial hypertension disease: cancerâ€like pathobiology, the role of the adventitia, systemic involvement, and right ventricular failure. Pulmonary Circulation, 2019, 9, 1-15.	0.8	23
24	Systems Analysis of the Human Pulmonary Arterial Hypertension Lung Transcriptome. American Journal of Respiratory Cell and Molecular Biology, 2019, 60, 637-649.	1.4	76
25	Common genetic variants in pulmonary arterial hypertension. Lancet Respiratory Medicine,the, 2019, 7, 190-191.	5.2	6
26	Comparing pulmonary hypertension severity between rat strains suggests right ventricle NK cells are protective. Cardiovascular Research, 2019, 115, 699-700.	1.8	1
27	Paclitaxel blocks Th2â€mediated TCFâ€Î² activation in <i>Schistosoma mansoni</i> â€induced pulmonary hypertension. Pulmonary Circulation, 2019, 9, 1-8.	0.8	7
28	How does inflammation contribute to pulmonary hypertension?. European Respiratory Journal, 2018, 51, 1702403.	3.1	28
29	Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension. Cardiovascular Research, 2018, 114, 551-564.	1.8	96
30	Dominant Role for Regulatory T Cells in Protecting Females Against Pulmonary Hypertension. Circulation Research, 2018, 122, 1689-1702.	2.0	97
31	Urocortin 2: will a drug targeting both the vasculature and the right ventricle be the future of pulmonary hypertension therapy?. Cardiovascular Research, 2018, 114, 1057-1059.	1.8	1
32	IL-33-HIF1α Axis in Hypoxic Pulmonary Hypertension. EBioMedicine, 2018, 33, 8-9.	2.7	3
33	Vascular Adaptation of the Right Ventricle in Experimental Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 479-489.	1.4	37
34	NEDD9 targets <i>COL3A1</i> to promote endothelial fibrosis and pulmonary arterial hypertension. Science Translational Medicine, 2018, 10, .	5.8	89
35	Barriers and Solutions to Developing Future Therapies for Pulmonary Hypertension. Advances in Pulmonary Hypertension, 2018, 17, 159-165.	0.1	0
36	Right Ventricle Vasculature in Human Pulmonary Hypertension Assessed by Stereology. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1075-1077.	2.5	25

#	Article	IF	CITATIONS
37	A Time- and Compartment-Specific Activation of Lung Macrophages in Hypoxic Pulmonary Hypertension. Journal of Immunology, 2017, 198, 4802-4812.	0.4	66
38	Enhanced inflammatory cell profiles in schistosomiasisâ€induced pulmonary vascular remodeling. Pulmonary Circulation, 2017, 7, 244-252.	0.8	6
39	TGF-Î ² activation by bone marrow-derived thrombospondin-1 causes Schistosoma- and hypoxia-induced pulmonary hypertension. Nature Communications, 2017, 8, 15494.	5.8	102
40	Bone marrow transplantation prevents right ventricle disease in the caveolin-1–deficient mouse model of pulmonary hypertension. Blood Advances, 2017, 1, 526-534.	2.5	12
41	Fatty Acid Metabolism, Bone Morphogenetic Protein Receptor Type 2, and the Right Ventricle. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 655-656.	2.5	3
42	Increased mitochondrial arginine metabolism supports bioenergetics in asthma. Journal of Clinical Investigation, 2016, 126, 2465-2481.	3.9	100
43	Determining the Optimal Approach to Initiating Oral, Inhaled, and Intravenous Therapies in Clinical Practice: Sequential Goal-Directed Therapy Is Best. , 2016, , 271-276.		0
44	Genetic and hypoxic alterations of the micro <scp>RNA</scp> â€210― <scp>ISCU</scp> 1/2 axis promote iron–sulfur deficiency and pulmonary hypertension. EMBO Molecular Medicine, 2015, 7, 695-713.	3.3	120
45	Matrix Remodeling Promotes Pulmonary Hypertension through Feedback Mechanoactivation of the YAP/TAZ-miR-130/301 Circuit. Cell Reports, 2015, 13, 1016-1032.	2.9	193
46	Severe pulmonary hypertension is associated with altered right ventricle metabolic substrate uptake. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L435-L440.	1.3	45
47	The Causal Role of IL-4 and IL-13 in <i>Schistosoma mansoni</i> Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 998-1008.	2.5	71
48	Functional Prostacyclin Synthase Promoter Polymorphisms. Impact in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1110-1120.	2.5	15
49	Schistosomiasis and the Pulmonary Vasculature (2013 Grover Conference Series). Pulmonary Circulation, 2014, 4, 353-362.	0.8	21
50	Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension. Journal of Clinical Investigation, 2014, 124, 3514-3528.	3.9	182
51	Adventitial Fibroblasts Induce a Distinct Proinflammatory/Profibrotic Macrophage Phenotype in Pulmonary Hypertension. Journal of Immunology, 2014, 193, 597-609.	0.4	162
52	Fat and Cardiotoxicity in Hereditary Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 247-249.	2.5	3
53	The Crossroads of Iron with Hypoxia and Cellular Metabolism. Implications in the Pathobiology of Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 721-729.	1.4	33
54	Rtp801 Suppression of Epithelial mTORC1 Augments Endotoxin-Induced Lung Inflammation. American Journal of Pathology, 2014, 184, 2382-2389.	1.9	23

#	Article	IF	CITATIONS
55	Role of Vascular Endothelial Growth Factor Signaling in <i>Schistosoma</i> â€Induced Experimental Pulmonary Hypertension. Pulmonary Circulation, 2014, 4, 289-299.	0.8	10
56	Role of ILâ€4 and ILâ€13 in Schistosomaâ€induced pulmonary hypertension (LB780). FASEB Journal, 2014, 28, LB780.	0.2	1
57	Antagonistic Regulation by the Transcription Factors C/EBPα and MITF Specifies Basophil and Mast Cell Fates. Immunity, 2013, 39, 97-110.	6.6	125
58	Pathology of Pulmonary Hypertension. Clinics in Chest Medicine, 2013, 34, 639-650.	0.8	214
59	A Sinus Venosus Atrial Septal Defect Is Diagnosed by Echocardiography with an Unusual Bubble Study. Echocardiography, 2013, 30, E182-E183.	0.3	4
60	Deletion of Iron Regulatory Protein 1 Causes Polycythemia and Pulmonary Hypertension in Mice through Translational Derepression of HIF2α. Cell Metabolism, 2013, 17, 271-281.	7.2	163
61	Fasting 2-Deoxy-2-[¹⁸ F]fluoro- <scp>d</scp> -glucose Positron Emission Tomography to Detect Metabolic Changes in Pulmonary Arterial Hypertension Hearts over 1 Year. Annals of the American Thoracic Society, 2013, 10, 1-9.	1.5	93
62	Dysfunctional Resident Lung Mesenchymal Stem Cells Contribute to Pulmonary Microvascular Remodeling. Pulmonary Circulation, 2013, 3, 31-49.	0.8	67
63	Pulmonary veins in the normal lung and pulmonary hypertension due to left heart disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L725-L736.	1.3	39
64	Updated Approach for the Assessment of Ventilator-Associated Pneumonia. Critical Care Medicine, 2013, 41, 2641-2642.	0.4	7
65	Transforming Growth Factor-Î ² Signaling Promotes Pulmonary Hypertension Caused by <i>Schistosoma Mansoni</i> . Circulation, 2013, 128, 1354-1364.	1.6	85
66	Schistosomiasis Causes Remodeling of Pulmonary Vessels in the Lung in a Heterogeneous Localized Manner: Detailed Study. Pulmonary Circulation, 2013, 3, 356-362.	0.8	25
67	Protective Role of IL-6 in Vascular Remodeling in <i>Schistosoma</i> Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 951-959.	1.4	43
68	Targeting Energetic Metabolism. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 260-266.	2.5	148
69	Modern Age Pathology of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 261-272.	2.5	501
70	Pulmonary vascular disease in mice xenografted with human BM progenitors from patients with pulmonary arterial hypertension. Blood, 2012, 120, 1218-1227.	0.6	68
71	Significant Intrapulmonary <i>Schistosoma</i> Egg Antigens are not Present in Schistosomiasisâ€Associated Pulmonary Hypertension. Pulmonary Circulation, 2011, 1, 456-461.	0.8	36
72	Schistosomiasis-Associated Pulmonary Hypertension. Chest, 2010, 137, 20S-29S.	0.4	100

#	Article	IF	CITATIONS
73	Diabetes mellitus does not adversely affect outcomes from a critical illness*. Critical Care Medicine, 2010, 38, 16-24.	0.4	114
74	Tracheal Basal Cells. American Journal of Pathology, 2010, 177, 362-376.	1.9	129
75	Schistosomiasis-Induced Experimental Pulmonary Hypertension. American Journal of Pathology, 2010, 177, 1549-1561.	1.9	90
76	Kiss of Death. New England Journal of Medicine, 2009, 360, 2564-2568.	13.9	33
77	TNFα inhibits apoptotic cell clearance in the lung, exacerbating acute inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L586-L595.	1.3	45
78	Dyspnea, Chest Pain, and Altered Mental Status in a 33-Year-Old Carpenter. Chest, 2008, 134, 1074-1079.	0.4	2
79	Cigarette Smoke Triggers Code Red. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 1-6.	1.4	30
80	Primary Pulmonary Lymphoma. Annals of Thoracic Surgery, 2005, 80, 1248-1253.	0.7	94
81	End-to-side venous anastomosis with the internal jugular vein stump: A preliminary report. Head and Neck, 2004, 26, 537-540.	0.9	10
82	Pediatric tracheal surgery. Annals of Thoracic Surgery, 2002, 74, 308-314.	0.7	104
83	Single Cell RNA Sequencing and Binary Hierarchical Clustering Defines Lung Interstitial Macrophage Heterogeneity in Response to Hypoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 0, , .	1.3	1
84	Sexual Dimorphism of Dexamethasone as a Prophylactic Treatment in Pathologies Associated With Acute Hypobaric Hypoxia Exposure. Frontiers in Pharmacology, 0, 13, .	1.6	2