List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12167629/publications.pdf Version: 2024-02-01

ANDREA FLODE

#	Article	IF	CITATIONS
1	Integrated near-infrared spectral sensing. Nature Communications, 2022, 13, 103.	12.8	47
2	Nearâ€Field Investigation of Luminescent Hyperuniform Disordered Materials. Advanced Optical Materials, 2022, 10, .	7.3	19
3	On-site illicit-drug detection with an integrated near-infrared spectral sensor: A proof of concept. Talanta, 2022, 245, 123441.	5.5	23
4	Demonstration of atomic force microscopy imaging using an integrated opto-electro-mechanical transducer. Ultramicroscopy, 2021, 230, 113368.	1.9	3
5	Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state. Nature Physics, 2020, 16, 69-74.	16.7	182
6	Indium Phosphide Membrane Nanophotonic Integrated Circuits on Silicon. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900606.	1.8	33
7	Non-Lorentzian Local Density of States in Coupled Photonic Crystal Cavities Probed by Near- and Far-Field Emission. Physical Review Letters, 2020, 124, 123902.	7.8	17
8	Mode-field switching of nanolasers. APL Photonics, 2020, 5, .	5.7	3
9	On-chip waveguide-coupled opto-electro-mechanical system for nanoscale displacement sensing. APL Photonics, 2020, 5, 026103.	5.7	12
10	On-Chip Photocurrent Displacement Sensor Based on a Waveguide-Coupled Nanomechanical Photonic Crystal Cavity. , 2019, , .		1
11	Dielectrics: Mechanical and Electric Control of Photonic Modes in Random Dielectrics (Adv. Mater.) Tj ETQq1 1 ().784314 i 21.0	gBT /Overloo
12	Coupled Photonic Crystal Nanocavities as a Tool to Tailor and Control Photon Emission. Ceramics, 2019, 2, 34-55.	2.6	2
13	Mechanical and Electric Control of Photonic Modes in Random Dielectrics. Advanced Materials, 2019, 31, 1807274.	21.0	6
14	Multimode photonic molecules for advanced force sensing. Optics Express, 2019, 27, 37579.	3.4	5
15	Nanomechanical control of optical field and quality factor in photonic crystal structures. Physical Review B, 2018, 97, .	3.2	4
16	Generalized Fano lineshapes reveal exceptional points in photonic molecules. Nature Communications, 2018, 9, 396.	12.8	37
17	Nano-opto-electro-mechanical systems. Nature Nanotechnology, 2018, 13, 11-18.	31.5	208
18	Integrated Optomechanical Displacement Sensor Based on a Photonic Crystal Cavity. , 2018, , .		2

Integrated Optomechanical Displacement Sensor Based on a Photonic Crystal Cavity. , 2018, , . 18

#	Article	IF	CITATIONS
19	Near-field speckle imaging of light localization in disordered photonic systems. Applied Physics Letters, 2017, 110, .	3.3	7
20	Control of the electromagnetic field in a cavity by an external perturbation. Proceedings of SPIE, 2017, , .	0.8	4
21	Coherent Atom-Phonon Interaction through Mode Field Coupling in Hybrid Optomechanical Systems. Physical Review Letters, 2017, 118, 133603.	7.8	31
22	Integrated nano-opto-electro-mechanical sensor for spectrometry and nanometrology. Nature Communications, 2017, 8, 2216.	12.8	41
23	Nano-opto-electro-mechanical switch based on a four-waveguide directional coupler. Optics Express, 2017, 25, 10166.	3.4	16
24	Integration of Single-Photon Sources and Detectors on GaAs. Photonics, 2016, 3, 55.	2.0	18
25	Photon-counting and analog operation of a 24-pixel photon number resolving detector based on superconducting nanowires. Optics Express, 2016, 24, 9067.	3.4	45
26	GaAs integrated quantum photonics: Towards compact and multiâ€functional quantum photonic integrated circuits. Laser and Photonics Reviews, 2016, 10, 870-894.	8.7	165
27	Photon counting with a 24-pixel SSPD based photon number resolving detector. , 2016, , .		1
28	Experimental investigation of the detection mechanism in WSi nanowire superconducting single photon detectors. Applied Physics Letters, 2016, 109, .	3.3	18
29	Waveguide Superconducting Single- and Few-Photon Detectors on GaAs for Integrated Quantum Photonics. Quantum Science and Technology, 2016, , 61-83.	2.6	1
30	Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna. Scientific Reports, 2015, 5, 9606.	3.3	14
31	Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system. Physical Review A, 2015, 91, .	2.5	16
32	Tailoring the Photon Hopping by Nearest-Neighbor and Next-Nearest-Neighbor Interaction in Photonic Arrays. ACS Photonics, 2015, 2, 565-571.	6.6	18
33	Photon-number-resolving superconducting nanowire detectors. Superconductor Science and Technology, 2015, 28, 104001.	3.5	39
34	Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes. Light: Science and Applications, 2015, 4, e326-e326.	16.6	29
35	Waveguide Nanowire Superconducting Single-Photon Detectors Fabricated on GaAs and the Study of Their Optical Properties. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 1-10.	2.9	188
36	Series-Nanowire Photon Number Resolving Detector Counting up to 24 Photons. , 2015, , .		2

#	Article	IF	CITATIONS
37	Tuning and imaging random photonic modes. , 2015, , .		Ο
38	Superconducting series nanowire detector counting up to twelve photons. Optics Express, 2014, 22, 3475.	3.4	36
39	Dynamically controlling the emission of single excitons in photonic crystal cavities. Nature Communications, 2014, 5, 5786.	12.8	31
40	Engineering of light confinement in strongly scattering disordered media. Nature Materials, 2014, 13, 720-725.	27.5	98
41	Design and Optical Properties of Electromechanical Double-Membrane Photonic Crystal Cavities. IEEE Journal of Quantum Electronics, 2014, 50, 404-414.	1.9	11
42	Ultrafast non-local control of spontaneous emission. Nature Nanotechnology, 2014, 9, 886-890.	31.5	59
43	Coupling of single quantum dots to photonic crystal cavities investigated by low-temperature scanning near-field optical microscopy. Physical Review B, 2013, 88, .	3.2	4
44	Ultrasensitive <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>N</mml:mi></mml:math> -Photon Interferometric Autocorrelator. Physical Review Letters, 2013, 110, 133605.	7.8	17
45	Integrated autocorrelator based on superconducting nanowires. Optics Express, 2013, 21, 11162.	3.4	21
46	Multimodal strong coupling of photonic crystal cavities of dissimilar size. Applied Physics Letters, 2012, 100, 081107.	3.3	8
47	Proposal for a superconducting photon number resolving detector with large dynamic range. Optics Express, 2012, 20, 5017.	3.4	43
48	Widely tunable, efficient on-chip single photon sources at telecommunication wavelengths. Optics Express, 2012, 20, 21758.	3.4	32
49	Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation. Applied Physics Letters, 2012, 100, 033116.	3.3	27
50	Experimental demonstration of a novel superconducting photon-number resolving detector at telecom wavelengths. Proceedings of SPIE, 2012, , .	0.8	0
51	Towards linear optical detection with single photon sensitivity at telecom wavelengths. , 2012, , .		0
52	Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides. Applied Physics Letters, 2012, 100, 061122.	3.3	50
53	Simultaneous near field imaging of electric and magnetic field in photonic crystal nanocavities. Photonics and Nanostructures - Fundamentals and Applications, 2012, 10, 251-255.	2.0	1
54	Ideal homoatomic and heteroatomic photonic crystal molecules. Photonics and Nanostructures - Fundamentals and Applications, 2012, 10, 271-275.	2.0	0

#	Article	IF	CITATIONS
55	Experimental demonstration of a novel superconducting photon number resolving detector. , 2012, , .		1
56	Scanning near-field optical microscopy of quantum dots in photonic crystal cavities. Journal of Physics: Conference Series, 2010, 245, 012040.	0.4	2
57	Sub-wavelength probing and modification of photonic crystal nano-cavities. Photonics and Nanostructures - Fundamentals and Applications, 2010, 8, 78-85.	2.0	0
58	Nanofluidic control of coupled photonic crystal resonators. Applied Physics Letters, 2010, 96, 141114.	3.3	24
59	Mode hybridization in photonic crystal molecules. Applied Physics Letters, 2010, 97, 063101.	3.3	23
60	Nanoscale Optical Detector with Single-Photon and Multiphoton Sensitivity. Nano Letters, 2010, 10, 2977-2981.	9.1	43
61	Eight-band kâ‹p calculations of the composition contrast effect on the linear polarization properties of columnar quantum dots. Journal of Applied Physics, 2010, 107, .	2.5	42
62	Magnetic Imaging in Photonic Crystal Microcavities. Physical Review Letters, 2010, 105, 123902.	7.8	52
63	Tunable homo- and hetero-atomic photonic molecules. , 2010, , .		Ο
64	Near-field imaging of coupled photonic-crystal microcavities. Applied Physics Letters, 2009, 94, 151103.	3.3	40
65	Ultrafast pulse-pair amplification in InGaAs quantum-dot amplifiers. , 2009, , .		0
66	Tuning of photonic crystal cavities by controlled removal of locally infiltrated water. Applied Physics Letters, 2009, 95, 173112.	3.3	32
67	High quality superconducting NbN thin films on GaAs. Superconductor Science and Technology, 2009, 22, 095013.	3.5	28
68	Polarization-sensitive near-field investigation of photonic crystal microcavities. Applied Physics Letters, 2009, 94, 163102.	3.3	29
69	Counting Photons Using a Nanonetwork of Superconducting Wires. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009, , 120-122.	0.3	0
70	Modeling of gain and phase dynamics in quantum dot amplifiers. Optical and Quantum Electronics, 2008, 40, 217-226.	3.3	6
71	Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths. Nature Photonics, 2008, 2, 302-306.	31.4	351
72	Controlling the Aspect Ratio of Quantum Dots: From Columnar Dots to Quantum Rods. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1204-1213.	2.9	17

#	Article	IF	CITATIONS
73	Nonlinear optical tuning of photonic crystal microcavities by near-field probe. Applied Physics Letters, 2008, 93, .	3.3	16
74	Spectral tuning and near-field imaging of photonic crystal microcavities. Physical Review B, 2008, 78, .	3.2	60
75	Electric Field Dependence of Modulation in Multilayer InAs Quantum Dot Waveguides. , 2007, , .		0
76	Linear electro-optic coefficient in multilayer self-organized InAs quantum dot structures. , 2007, , .		0
77	Differential Gain and Gain Compression in Quantum-Dot Lasers. IEEE Journal of Quantum Electronics, 2007, 43, 287-294.	1.9	86
78	Linear electro-optic coefficient in multilayer self-organized InAs quantum dot structures. , 2007, , .		0
79	Polarization dependence study of electroluminescence and absorption from InAsâ^•GaAs columnar quantum dots. Applied Physics Letters, 2007, 91, .	3.3	39
80	Ultrafast gain dynamics in 1.3μm InAsâ^•GaAs quantum-dot optical amplifiers: The effect of p doping. Applied Physics Letters, 2007, 90, 201103.	3.3	33
81	Single-Photon Detection System for Quantum Optics Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 944-951.	2.9	37