List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12167342/publications.pdf Version: 2024-02-01

WEN-YING LI

#	Article	IF	CITATIONS
1	A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment. Journal of Materials Chemistry A, 2020, 8, 2246-2285.	10.3	260
2	Low-Temperature Steam Reforming of Toluene and Biomass Tar over Biochar-Supported Ni Nanoparticles. ACS Sustainable Chemistry and Engineering, 2019, 7, 3111-3119.	6.7	111
3	Coke oven gas to methanol process integrated with CO2 recycle for high energy efficiency, economic benefits and low emissions. Energy Conversion and Management, 2017, 133, 318-331.	9.2	97
4	Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance. Energy, 2016, 112, 618-628.	8.8	77
5	A feasibility study for CO2 recycle assistance with coke oven gas to synthetic natural gas. Applied Energy, 2017, 193, 149-161.	10.1	69
6	Catalytic upgrading of coal pyrolysis products over bio-char. Fuel Processing Technology, 2018, 176, 240-248.	7.2	61
7	Investigation and optimization analysis on deployment of China coal chemical industry under carbon emission constraints. Applied Energy, 2019, 254, 113684.	10.1	60
8	Effect of the existing air pollutant control devices on mercury emission in coal-fired power plants. Journal of Fuel Chemistry and Technology, 2010, 38, 641-646.	2.0	57
9	Enhanced CO 2 sorption performance of CaO/Ca 3 Al 2 O 6 sorbents and its sintering-resistance mechanism. Applied Energy, 2017, 199, 225-233.	10.1	57
10	Prediction of elemental composition of coal using proximate analysis. Fuel, 2017, 193, 315-321.	6.4	56
11	Impact of biomass addition on organic structure and mineral matter of char during coal-biomass co-gasification under CO 2 atmosphere. Fuel, 2017, 202, 556-562.	6.4	46
12	Pathway of biomass-potassium migration in co-gasification of coal and biomass. Fuel, 2019, 239, 365-372.	6.4	45
13	Carbon dioxide reforming of methane over MgO-promoted Ni/SiO2 catalysts with tunable Ni particle size. Catalysis Today, 2020, 356, 589-596.	4.4	38
14	Review on Hydrodesulfurization over Zeolite-Based Catalysts. Industrial & Engineering Chemistry Research, 2021, 60, 3295-3323.	3.7	37
15	Energy use, greenhouse gases emission and cost effectiveness of an integrated high– and low–temperature Fisher–Tropsch synthesis plant from a lifecycle viewpoint. Applied Energy, 2018, 228, 1009-1019.	10.1	36
16	Semi-coke as solid heat carrier for low-temperature coal tar upgrading. Fuel Processing Technology, 2016, 143, 79-85.	7.2	34
17	Effect of adjusting coal properties on HulunBuir lignite pyrolysis. Fuel Processing Technology, 2017, 156, 415-420.	7.2	34
18	Hydrogen production from vegetable oil via a chemical looping process with hematite oxygen carriers. Journal of Cleaner Production, 2018, 200, 588-597.	9.3	34

#	Article	IF	CITATIONS
19	The oxygen evolution during pyrolysis of HunlunBuir lignite under different heating modes. Fuel, 2017, 207, 85-92.	6.4	31
20	A feasibility analysis of distributed power plants from agricultural residues resources gasification in rural China. Biomass and Bioenergy, 2019, 121, 1-12.	5.7	30
21	Evaluation on a combined model for low-rank coal pyrolysis. Energy, 2019, 169, 1012-1021.	8.8	29
22	Formation of HCN and NH3 during coal macerals pyrolysis and gasification with CO2. Fuel, 2005, 84, 271-277.	6.4	28
23	Density functional theory study of acetic acid steam reforming on Ni(111). Applied Surface Science, 2017, 400, 97-109.	6.1	27
24	Effect of biomass ash addition on coal ash fusion process under CO2 atmosphere. Fuel, 2018, 231, 417-426.	6.4	27
25	Effect of boron doping on the performance of Ni/Biochar catalysts for steam reforming of toluene as a tar model compound. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105033.	5.5	26
26	Octamolybdates containing MoV and MoVI sites supported on mesoporous tin oxide for oxidative desulfurization of liquid fuels. Journal of Cleaner Production, 2022, 334, 130199.	9.3	25
27	Studies of the release rule of NOx precursors during gasification of coal and its char. Fuel Processing Technology, 2003, 84, 243-254.	7.2	24
28	Co-pyrolysis performance of coal and its direct coal liquefaction residue with solid heat carrier. Fuel Processing Technology, 2017, 166, 69-76.	7.2	24
29	Desulfurization on Boron Nitride and Boron Nitrideâ€based Materials. Chemistry - an Asian Journal, 2020, 15, 2038-2059.	3.3	23
30	Ca-enhanced hematite oxygen carriers for chemical looping reforming of biomass pyrolyzed gas coupled with CO2 splitting. Fuel, 2021, 285, 119125.	6.4	22
31	Product distribution and interactive mechanism during co-pyrolysis of a subbituminous coal and its direct liquefaction residue. Fuel, 2017, 199, 372-379.	6.4	21
32	Promotional effect of TiO2 on quinoline hydrodenitrogenation activity over Pt/γ-Al2O3 catalysts. Chemical Engineering Science, 2019, 207, 1085-1095.	3.8	21
33	Comparative Analysis of Typical Low Rank Coal Pyrolysis Technology Based on a Nonlinear Programming Model. Energy & Fuels, 2017, 31, 12977-12987.	5.1	19
34	Evolution properties of cellulose- and lignin-derived pyrolysis tars after interacting with coal chars. Journal of Analytical and Applied Pyrolysis, 2016, 122, 332-341.	5.5	18
35	The interaction between the char solid heat carrier and the volatiles during low-rank coal pyrolysis. Journal of Analytical and Applied Pyrolysis, 2018, 136, 160-168.	5.5	18
36	Acid pretreatment effect on oxygen migration during lignite pyrolysis. Fuel, 2020, 262, 116650.	6.4	18

#	Article	IF	CITATIONS
37	Comparative study on the activities of different MgO surfaces in CO2 activation and hydrogenation. Catalysis Today, 2020, 356, 535-543.	4.4	18
38	Enrichment of polymeric WOx species in WOx@SnO2 catalysts for ultra-deep oxidative desulfurization of liquid fuels. Fuel, 2021, 290, 120036.	6.4	18
39	A theoretical study on the role of water and its derivatives in acetic acid steam reforming on Ni(111). Applied Surface Science, 2017, 419, 114-125.	6.1	17
40	Oxidative Dehydrogenation of Ethylbenzene with Carbon Dioxide over Metal-Doped Titanium Oxides. Catalysis Letters, 2004, 93, 31-35.	2.6	14
41	CO2 reforming of CH4 over a highly active and stable Ni Mg Al catalyst. International Journal of Hydrogen Energy, 2017, 42, 3036-3042.	7.1	14
42	High-performance NiMoS hydrodesulfurization catalysts by one-pot hydrothermal synthesis using Ni(acac)2 for sulfur-free liquid fuels. Fuel Processing Technology, 2022, 227, 107101.	7.2	14
43	Reaction pathway of CH 4 /CO 2 reforming over Ni8/MgO(100). Surface Science, 2017, 660, 22-30.	1.9	13
44	Self-activation of CaO/Ca3Al2O6 sorbents by thermally pretreated in CO2 atmosphere. Applied Energy, 2018, 220, 419-425.	10.1	13
45	Functionalized Silicas for Metalâ€Free and Metalâ€Based Catalytic Applications: A Review in Perspective of Green Chemistry. Chemical Record, 2020, 20, 513-540.	5.8	13
46	Co-production of Naphthenic Oil and Phenolic Compounds from Medium- and Low-Temperature Coal Tar. Industrial & Engineering Chemistry Research, 2021, 60, 5890-5902.	3.7	13
47	Metal precursor impregnation sequence effect on the structure and performance of Ni Co/MgO catalyst. International Journal of Hydrogen Energy, 2019, 44, 8089-8098.	7.1	12
48	Feasibility analysis of high–low temperature Fischer–Tropsch synthesis integration in olefin production. Chemical Engineering Research and Design, 2018, 131, 92-103.	5.6	11
49	Properties of semi-coke from co-pyrolysis of lignite and direct liquefaction residue of Shendong coal. Journal of Fuel Chemistry and Technology, 2015, 43, 1281-1286.	2.0	9
50	Influence of calcination temperature on the structure and catalytic reforming performance of Ni/CaO-Al 2 O 3 catalyst. Journal of Fuel Chemistry and Technology, 2018, 46, 673-679.	2.0	7
51	Influence of potassium carbonate catalysis and pre-treatment atmosphere on the textural, structural, and chemical properties of high and low rank coals blended with biomass and their reactivity under conventional and oxy-combustion processes. Energy, 2021, 220, 119602.	8.8	6
52	Molecular insights into the hydrodenitrogenation mechanism of pyridine over Pt/γ-Al2O3 catalysts. Molecular Catalysis, 2020, 495, 111148.	2.0	5
53	Synthesis of Ni/NiAlOx Catalysts for Hydrogenation Saturation of Phenanthrene. Frontiers in Chemistry, 2021, 9, 757908.	3.6	5
54	Surface Properties and Reactivity of Iron-Doped Titanium Oxides Catalysts in Oxidative Dehydrogenation of Ethylbenzene with CO2. Petroleum Science and Technology, 2006, 24, 963-972.	1.5	3

#	Article	IF	CITATIONS
55	Effect of preheating treatment on oxygen migration during lignite pyrolysis. Journal of Fuel Chemistry and Technology, 2019, 47, 1-8.	2.0	3
56	Influence of Ni on the active phase and hydrodenitrogenation and hydrodesulfurization activities of MoS2 catalysts. Journal of Fuel Chemistry and Technology, 2021, 49, 1513-1521.	2.0	3
57	Minimizing aromatics entrainment in dephenolization of coal-based liquids by deep eutectic solvents. Chemical Engineering Science: X, 2020, 8, 100070.	1.5	2
58	Process Systems Engineering of High-low Temperature Fischer-Tropsch Synthesis Integration in Olefin Production. Energy Procedia, 2017, 142, 3049-3054.	1.8	1
59	Distribution of Nitrogen Species During Vitrinite Pyrolysis and Gasification. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2006, 28, 1075-1084.	2.3	0
60	Synthesis of Mesoporous Materials. Engineering Materials, 2022, , 113-173.	0.6	0