Yi-Ou Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12166560/publications.pdf

Version: 2024-02-01

19 papers	1,990 citations	758635 12 h-index	17 g-index
19 all docs	19 docs citations	19 times ranked	2711 citing authors

#	Article	IF	CITATIONS
1	Stochastic geometric network models for groups of functional and structural connectomes. Neurolmage, 2014, 101, 473-484.	2.1	16
2	The structural connectome of the human brain in agenesis of the corpus callosum. NeuroImage, 2013, 70, 340-355.	2.1	74
3	Resting-State Networks and the Functional Connectome of the Human Brain in Agenesis of the Corpus Callosum. Brain Connectivity, 2013, 3, 547-562.	0.8	50
4	Independent component analysis of DTI reveals multivariate microstructural correlations of white matter in the human brain. Human Brain Mapping, 2012, 33, 1431-1451.	1.9	43
5	Order Selection of the Linear Mixing Model for Complex-Valued FMRI Data. Journal of Signal Processing Systems, 2012, 67, 117-128.	1.4	3
6	Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis. Journal of Signal Processing Systems, 2012, 68, 31-48.	1.4	31
7	A review of multivariate methods in brain imaging data fusion. Proceedings of SPIE, 2010, , .	0.8	4
8	Fusion of concurrent single trial EEG data and fMRI data using multi-set canonical correlation analysis. , $2010, , .$		0
9	Multi-set canonical correlation analysis for the fusion of concurrent single trial ERP and functional MRI. Neurolmage, 2010, 50, 1438-1445.	2.1	156
			the state of the s
10	Microstructural correlations of white matter tracts in the human brain. NeuroImage, 2010, 51, 531-541.	2.1	102
10	Microstructural correlations of white matter tracts in the human brain. NeuroImage, 2010, 51, 531-541. Canonical Correlation Analysis for Data Fusion and Group Inferences. IEEE Signal Processing Magazine, 2010, 27, 39-50.	2.1	102
	Canonical Correlation Analysis for Data Fusion and Group Inferences. IEEE Signal Processing		
11	Canonical Correlation Analysis for Data Fusion and Group Inferences. IEEE Signal Processing Magazine, 2010, 27, 39-50. On Entropy Rate for the Complex Domain and Its Application to i.i.d. Sampling. IEEE Transactions on	4.6	217
11 12	Canonical Correlation Analysis for Data Fusion and Group Inferences. IEEE Signal Processing Magazine, 2010, 27, 39-50. On Entropy Rate for the Complex Domain and Its Application to i.i.d. Sampling. IEEE Transactions on Signal Processing, 2010, 58, 2409-2414. Joint Blind Source Separation by Multiset Canonical Correlation Analysis. IEEE Transactions on Signal	4.6 3.2	217 8
11 12 13	Canonical Correlation Analysis for Data Fusion and Group Inferences. IEEE Signal Processing Magazine, 2010, 27, 39-50. On Entropy Rate for the Complex Domain and Its Application to i.i.d. Sampling. IEEE Transactions on Signal Processing, 2010, 58, 2409-2414. Joint Blind Source Separation by Multiset Canonical Correlation Analysis. IEEE Transactions on Signal Processing, 2009, 57, 3918-3929. Canonical Correlation Analysis for Feature-Based Fusion of Biomedical Imaging Modalities and Its Application to Detection of Associative Networks in Schizophrenia. IEEE Journal on Selected Topics in	4.6 3.2 3.2	217 8 340
11 12 13	Canonical Correlation Analysis for Data Fusion and Group Inferences. IEEE Signal Processing Magazine, 2010, 27, 39-50. On Entropy Rate for the Complex Domain and Its Application to i.i.d. Sampling. IEEE Transactions on Signal Processing, 2010, 58, 2409-2414. Joint Blind Source Separation by Multiset Canonical Correlation Analysis. IEEE Transactions on Signal Processing, 2009, 57, 3918-3929. Canonical Correlation Analysis for Feature-Based Fusion of Biomedical Imaging Modalities and Its Application to Detection of Associative Networks in Schizophrenia. IEEE Journal on Selected Topics in Signal Processing, 2008, 2, 998-1007. CCA for joint blind source separation of multiple datasets with application to group FMRI analysis.	4.6 3.2 3.2 7.3	217 8 340 120
11 12 13 14	Canonical Correlation Analysis for Data Fusion and Group Inferences. IEEE Signal Processing Magazine, 2010, 27, 39-50. On Entropy Rate for the Complex Domain and Its Application to i.i.d. Sampling. IEEE Transactions on Signal Processing, 2010, 58, 2409-2414. Joint Blind Source Separation by Multiset Canonical Correlation Analysis. IEEE Transactions on Signal Processing, 2009, 57, 3918-3929. Canonical Correlation Analysis for Feature-Based Fusion of Biomedical Imaging Modalities and Its Application to Detection of Associative Networks in Schizophrenia. IEEE Journal on Selected Topics in Signal Processing, 2008, 2, 998-1007. CCA for joint blind source separation of multiple datasets with application to group FMRI analysis. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2008, , .	4.6 3.2 3.2 7.3	217 8 340 120