Xianhua Piao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1216522/publications.pdf

Version: 2024-02-01

117453 143772 5,990 60 34 57 h-index citations g-index papers 66 66 66 6786 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Microglial GPR56 is the molecular target of maternal immune activation-induced parvalbumin-positive interneuron deficits. Science Advances, 2022, 8, eabm2545.	4.7	14
2	Cell typeâ€specific evaluation of ADGRG1 / GPR56 function in developmental central nervous system myelination. Glia, 2021, 69, 413-423.	2.5	17
3	Linking adhesion GPCRs to glial cell development and function. , 2021, , 93-103.		O
4	Unexpected redundancy of Gpr56 and Gpr97 during hematopoietic cell development and differentiation. Blood Advances, 2021, 5, 829-842.	2.5	13
5	Association of Maternal Immune Activation during Pregnancy and Neurologic Outcomes in Offspring. Journal of Pediatrics, 2021, 238, 87-93.e3.	0.9	11
6	The association of COVID-19 infection in pregnancy with preterm birth: A retrospective cohort study in California. The Lancet Regional Health Americas, 2021, 2, 100027.	1.5	63
7	Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell, 2021, 28, 2153-2166.e6.	5.2	98
8	Phospholipidâ€flippase chaperone CDC50A is required for synapse maintenance by regulating phosphatidylserine exposure. EMBO Journal, 2021, 40, e107915.	3.5	13
9	The Inhibitory Receptor GPR56 (Adgrg1) Is Specifically Expressed by Tissue-Resident Memory T Cells in Mice But Dispensable for Their Differentiation and Function In Vivo. Cells, 2021, 10, 2675.	1.8	2
10	Oligodendrocyte Development and Implication in Perinatal White Matter Injury. Frontiers in Cellular Neuroscience, 2021, 15, 764486.	1.8	21
11	GPR56/ADGRG1 is a platelet collagen-responsive GPCR and hemostatic sensor of shear force. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28275-28286.	3.3	61
12	A splicing isoform of GPR56 mediates microglial synaptic refinement via phosphatidylserine binding. EMBO Journal, 2020, 39, e104136.	3.5	103
13	GAIN domain–mediated cleavage is required for activation of G protein–coupled receptor 56 (GPR56) by its natural ligands and a small-molecule agonist. Journal of Biological Chemistry, 2019, 294, 19246-19254.	1.6	40
14	The expanding functional roles and signaling mechanisms of adhesion G protein–coupled receptors. Annals of the New York Academy of Sciences, 2019, 1456, 5-25.	1.8	16
15	Adhesion G Protein-Coupled Receptors as Drug Targets for Neurological Diseases. Trends in Pharmacological Sciences, 2019, 40, 278-293.	4.0	53
16	Overlap of polymicrogyria, hydrocephalus, and Joubert syndrome in a family with novel truncating mutations in ADGRG1/GPR56 and KIAA0556. Neurogenetics, 2019, 20, 91-98.	0.7	17
17	Single-Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity, 2019, 50, 253-271.e6.	6.6	1,351
18	GPR56/ADGRG1 regulates development and maintenance of peripheral myelin. Journal of Experimental Medicine, 2018, 215, 941-961.	4.2	51

#	Article	IF	Citations
19	The adhesion receptor GPR56 is activated by extracellular matrix collagen III to improve \hat{l}^2 -cell function. Cellular and Molecular Life Sciences, 2018, 75, 4007-4019.	2.4	47
20	Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. ELife, 2018, 7, .	2.8	86
21	GPR56/ADGRG1., 2018,, 2217-2224.		O
22	GPR56/ADGRG1 Inhibits Mesenchymal Differentiation and Radioresistance in Glioblastoma. Cell Reports, 2017, 21, 2183-2197.	2.9	56
23	Novel mutation in <i>CNTNAP1</i> results in congenital hypomyelinating neuropathy. Muscle and Nerve, 2017, 55, 761-765.	1.0	15
24	Adhesion Gâ€protein coupled receptors and extracellular matrix proteins: Roles in myelination and glial cell development. Developmental Dynamics, 2017, 246, 275-284.	0.8	27
25	Gpr126/Adgrg6 Has Schwann Cell Autonomous and Nonautonomous Functions in Peripheral Nerve Injury and Repair. Journal of Neuroscience, 2016, 36, 12351-12367.	1.7	62
26	Adhesion G protein-coupled receptors in nervous system development and disease. Nature Reviews Neuroscience, 2016, 17, 550-561.	4.9	87
27	Structural Basis for Regulation of GPR56/ADGRG1 by Its Alternatively Spliced Extracellular Domains. Neuron, 2016, 91, 1292-1304.	3.8	92
28	Adhesion GPCRs as Novel Actors in Neural and Glial Cell Functions: From Synaptogenesis to Myelination. Handbook of Experimental Pharmacology, 2016, 234, 275-298.	0.9	9
29	GPR56/ADGRG1., 2016, , 1-8.		0
30	GPR56 and Bilateral Frontoparietal Polymicrogyria., 2016,, 1197-1201.		0
31	The Adhesion GPCR GPR126 Has Distinct, Domain-Dependent Functions in Schwann Cell Development Mediated by Interaction with Laminin-211. Neuron, 2015, 85, 755-769.	3.8	224
32	The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with $\hat{Gl}\pm 12/13$ and RhoA. Nature Communications, 2015, 6, 6122.	5.8	119
33	International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein–Coupled Receptors. Pharmacological Reviews, 2015, 67, 338-367.	7.1	392
34	High-level Gpr56 expression is dispensable for the maintenance and function of hematopoietic stem and progenitor cells in mice. Stem Cell Research, 2015, 14, 307-322.	0.3	26
35	Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathologica, 2015, 130, 605-618.	3.9	358
36	The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nature Communications, 2015, 6, 6121.	5.8	116

#	Article	IF	CITATIONS
37	Tethered agonists: a new mechanism underlying adhesion G protein-coupled receptor activation. Journal of Receptor and Signal Transduction Research, 2015, 35, 220-223.	1.3	17
38	Mechanism for Adhesion G Protein-Coupled Receptor GPR56-Mediated RhoA Activation Induced By Collagen III Stimulation. PLoS ONE, 2014, 9, e100043.	1.1	65
39	Evolutionarily Dynamic Alternative Splicing of <i>GPR56</i> Regulates Regional Cerebral Cortical Patterning. Science, 2014, 343, 764-768.	6.0	238
40	G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15756-15761.	3.3	95
41	Abstract 3041: GPR56 promotes the adhesion of glioma stem-like cells to the perivascular niche and regulates cell fate. , 2014, , .		0
42	GPR56 and the Developing Cerebral Cortex: Cells, Matrix, and Neuronal Migration. Molecular Neurobiology, 2013, 47, 186-196.	1.9	52
43	Gâ€protein coupled receptor 56 promotes myoblast fusion through serum response factor―and nuclear factor of activated Tâ€cellâ€mediated signalling but is not essential for muscle development <i>inÂvivo</i> . FEBS Journal, 2013, 280, 6097-6113.	2.2	39
44	GPR56 Functions Together with $\hat{l}\pm3\hat{l}^21$ Integrin in Regulating Cerebral Cortical Development. PLoS ONE, 2013, 8, e68781.	1.1	70
45	Characterization of G proteinâ€coupled receptor 56 protein expression in the mouse developing neocortex. Journal of Comparative Neurology, 2012, 520, 2930-2940.	0.9	33
46	Loss of Col3a1, the Gene for Ehlers-Danlos Syndrome Type IV, Results in Neocortical Dyslamination. PLoS ONE, 2012, 7, e29767.	1.1	36
47	Disease-Associated Mutations Prevent GPR56-Collagen III Interaction. PLoS ONE, 2012, 7, e29818.	1.1	50
48	A Novel GPR56 Mutation Causes Bilateral Frontoparietal Polymicrogyria. Pediatric Neurology, 2011, 45, 49-53.	1.0	23
49	G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12925-12930.	3.3	235
50	Adhesion-GPCRs in the CNS. Advances in Experimental Medicine and Biology, 2010, 706, 87-97.	0.8	8
51	GPR56-Regulated Granule Cell Adhesion Is Essential for Rostral Cerebellar Development. Journal of Neuroscience, 2009, 29, 7439-7449.	1.7	85
52	Chapter 1 GPR56 and Its Related Diseases. Progress in Molecular Biology and Translational Science, 2009, 89, 1-13.	0.9	19
53	GPR56 Regulates Pial Basement Membrane Integrity and Cortical Lamination. Journal of Neuroscience, 2008, 28, 5817-5826.	1.7	209
54	Disease-associated mutations affect GPR56 protein trafficking and cell surface expression. Human Molecular Genetics, 2007, 16, 1972-1985.	1.4	109

XIANHUA PIAO

#	Article	IF	CITATION
55	Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes. Annals of Neurology, 2005, 58, 680-687.	2.8	124
56	A Novel Signaling Mechanism in Brain Development. Pediatric Research, 2004, 56, 309-310.	1.1	4
57	G Protein-Coupled Receptor-Dependent Development of Human Frontal Cortex. Science, 2004, 303, 2033-2036.	6.0	498
58	Bilateral frontoparietal polymicrogyria: Clinical and radiological features in 10 families with linkage to chromosome 16. Annals of Neurology, 2003, 53, 596-606.	2.8	120
59	An Autosomal Recessive Form of Bilateral Frontoparietal Polymicrogyria Maps to Chromosome 16q12.2-21. American Journal of Human Genetics, 2002, 70, 1028-1033.	2.6	113
60	recessive spotting: a linked locus that interacts with W/Kitbut is not allelic. Genes To Cells, 1998, 3, 235-244.	0.5	4