Chad D Vecitis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12164067/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antiviral-nanoparticle interactions and reactions. Environmental Science: Nano, 2021, 8, 11-19.	2.2	9
2	Fouling reduction and recovery during forward osmosis of wastewater using an electroactive CNT composite membrane. Journal of Membrane Science, 2021, 620, 118803.	4.1	10
3	Isolating the AFFF Signature in Coastal Watersheds Using Oxidizable PFAS Precursors and Unexplained Organofluorine. Environmental Science & Technology, 2021, 55, 3686-3695.	4.6	56
4	Dependence of Graphene Oxide (GO) Toxicity on Oxidation Level, Elemental Composition, and Size. International Journal of Molecular Sciences, 2021, 22, 10578.	1.8	11
5	Comparative and mechanistic toxicity assessment of structure-dependent toxicity of carbon-based nanomaterials. Journal of Hazardous Materials, 2021, 418, 126282.	6.5	10
6	Dual-high-frequency from single-piezoelectric crystal for ACE degradation by hybrid advanced oxidation UV-sonochemistry process. Ultrasonics Sonochemistry, 2021, 78, 105731.	3.8	3
7	Surface-water/groundwater boundaries affect seasonal PFAS concentrations and PFAA precursor transformations. Environmental Sciences: Processes and Impacts, 2021, 23, 1893-1905.	1.7	15
8	Synergism of ozonation and electrochemical filtration during advanced organic oxidation. Journal of Hazardous Materials, 2020, 382, 121085.	6.5	22
9	Graphene oxide membranes on a hierarchical elemental carbon-based support. Environmental Science: Nano, 2020, 7, 891-902.	2.2	4
10	Dataset and detailed methodology for structure and performance characterization of modified polymeric membranes. Data in Brief, 2020, 28, 104862.	0.5	0
11	Prospects of an Electroactive Carbon Nanotube Membrane toward Environmental Applications. Accounts of Chemical Research, 2020, 53, 2892-2902.	7.6	150
12	Synthesis and Physicochemical Transformations of Sizeâ€Sorted Graphene Oxide during Simulated Digestion and Its Toxicological Assessment against an In Vitro Model of the Human Intestinal Epithelium. Small, 2020, 16, e1907640.	5.2	20
13	Toxicity of single-walled carbon nanotubes (SWCNTs): effect of lengths, functional groups and electronic structures revealed by a quantitative toxicogenomics assay. Environmental Science: Nano, 2020, 7, 1348-1364.	2.2	40
14	Reductive transformation of perfluorooctanesulfonate by nNiFeO-Activated carbon. Journal of Hazardous Materials, 2020, 397, 122782.	6.5	15
15	Mixed matrix polysulfone/clay nanoparticles ultrafiltration membranes for water treatment. Journal of Water Process Engineering, 2019, 31, 100788.	2.6	35
16	How Do We Measure Poly- and Perfluoroalkyl Substances (PFASs) at the Surface of Consumer Products?. Environmental Science and Technology Letters, 2019, 6, 38-43.	3.9	46
17	Electrocatalytic water treatment using carbon nanotube filters modified with metal oxides. Environmental Science and Pollution Research, 2019, 26, 1036-1043.	2.7	22
18	Graphene oxide standardization and classification: Methods to support the leap from lab to industry. Carbon, 2018, 133, 398-409.	5.4	28

#	Article	IF	CITATIONS
19	A direct comparison of flow-by and flow-through capacitive deionization. Desalination, 2018, 444, 169-177.	4.0	65
20	Combined effects of phase-shift and power distribution on efficiency of dual-high-frequency sonochemistry. Ultrasonics Sonochemistry, 2018, 41, 100-108.	3.8	14
21	Controlling the Roughness of Langmuir–Blodgett Monolayers. Journal of Physical Chemistry B, 2017, 121, 5078-5085.	1.2	7
22	Tuning electric field aligned CNT architectures via chemistry, morphology, and sonication from micro to macroscopic scale. Nanoscale, 2017, 9, 6854-6865.	2.8	18
23	Role of Oxygen Functionalities in Graphene Oxide Architectural Laminate Subnanometer Spacing and Water Transport. Environmental Science & Technology, 2017, 51, 4280-4288.	4.6	72
24	Geochemical and Hydrologic Factors Controlling Subsurface Transport of Poly- and Perfluoroalkyl Substances, Cape Cod, Massachusetts. Environmental Science & Technology, 2017, 51, 4269-4279.	4.6	150
25	Recent advances in nanomaterials for water protection and monitoring. Chemical Society Reviews, 2017, 46, 6946-7020.	18.7	441
26	Wrinkling and Periodic Folding of Graphene Oxide Monolayers by Langmuir–Blodgett Compression. Langmuir, 2017, 33, 9880-9888.	1.6	16
27	Interlaced CNT Electrodes for Bacterial Fouling Reduction of Microfiltration Membranes. Environmental Science & Technology, 2017, 51, 9176-9183.	4.6	40
28	Enhanced performance of nitrogen-doped carbon nanotube membrane-based filtration cathode microbial fuel cell. Electrochimica Acta, 2016, 211, 199-206.	2.6	32
29	How to Increase the Signal-to-Noise Ratio of Graphene Oxide Membrane Research. Journal of Physical Chemistry Letters, 2016, 7, 3791-3797.	2.1	41
30	Source Attribution of Poly- and Perfluoroalkyl Substances (PFASs) in Surface Waters from Rhode Island and the New York Metropolitan Area. Environmental Science and Technology Letters, 2016, 3, 316-321.	3.9	111
31	Electric-field alignment of aqueous multi-walled carbon nanotubes on microporous substrates. Carbon, 2016, 100, 578-589.	5.4	26
32	Fabrication and morphology tuning of graphene oxide nanoscrolls. Nanoscale, 2016, 8, 6783-6791.	2.8	62
33	A Singleâ€Use Paperâ€Shaped Microbial Fuel Cell for Rapid Aqueous Biosensing. ChemSusChem, 2015, 8, 2035-2040.	3.6	16
34	Semiquantitative Performance and Mechanism Evaluation of Carbon Nanomaterials as Cathode Coatings for Microbial Fouling Reduction. Applied and Environmental Microbiology, 2015, 81, 4744-4755.	1.4	32
35	Controlling Self-Assembly of Reduced Graphene Oxide at the Air–Water Interface: Quantitative Evidence for Long-Range Attractive and Many-Body Interactions. ACS Applied Materials & Interfaces, 2015, 7, 3807-3815.	4.0	20
36	Carbon Nanotube Membrane Stack for Flow-through Sequential Regenerative Electro-Fenton. Environmental Science & Technology, 2015, 49, 2375-2383.	4.6	209

#	Article	IF	CITATIONS
37	Degradation of the Common Aqueous Antibiotic Tetracycline using a Carbon Nanotube Electrochemical Filter. Environmental Science & Technology, 2015, 49, 7974-7980.	4.6	200
38	Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H ₂ O ₂ . Environmental Science: Water Research and Technology, 2015, 1, 769-778.	1.2	78
39	Effect of the oxidation approach on carbon nanotube surface functional groups and electrooxidative filtration performance. Journal of Materials Chemistry A, 2015, 3, 7575-7582.	5.2	71
40	Conductive CNT-PVDF membrane for capacitive organic fouling reduction. Journal of Membrane Science, 2014, 459, 143-156.	4.1	147
41	Titanium Dioxide-Coated Carbon Nanotube Network Filter for Rapid and Effective Arsenic Sorption. Environmental Science & Technology, 2014, 48, 13871-13879.	4.6	115
42	CNT–PVDF composite flow-through electrode for single-pass sequential reduction–oxidation. Journal of Materials Chemistry A, 2014, 2, 6185.	5.2	60
43	Quantitative 2D electrooxidative carbon nanotube filter model: Insight into reactive sites. Carbon, 2014, 80, 651-664.	5.4	26
44	A graphene-based electrochemical filter for water purification. Journal of Materials Chemistry A, 2014, 2, 16554-16562.	5.2	108
45	Bismuth-Doped Tin Oxide-Coated Carbon Nanotube Network: Improved Anode Stability and Efficiency for Flow-Through Organic Electrooxidation. ACS Applied Materials & Interfaces, 2013, 5, 10054-10066.	4.0	115
46	Electrocatalysis aqueous phenol with carbon nanotubes networks as anodes: Electrodes passivation and prevention. Electrochimica Acta, 2013, 98, 131-138.	2.6	50
47	Effect of clay nanoparticles on the structure and performance of polyethersulfone ultrafiltration membranes. Desalination, 2013, 314, 147-158.	4.0	55
48	Quantitative Examination of Aqueous Ferrocyanide Oxidation in a Carbon Nanotube Electrochemical Filter: Effects of Flow Rate, Ionic Strength, and Cathode Material. Journal of Physical Chemistry C, 2013, 117, 2855-2867.	1.5	65
49	Anion dopant effects on the structure and performance of polyethersulfone membranes. Journal of Membrane Science, 2012, 421-422, 91-102.	4.1	32
50	Doped Carbon Nanotube Networks for Electrochemical Filtration of Aqueous Phenol: Electrolyte Precipitation and Phenol Polymerization. ACS Applied Materials & Interfaces, 2012, 4, 1478-1489.	4.0	69
51	Electrochemical Carbon-Nanotube Filter Performance toward Virus Removal and Inactivation in the Presence of Natural Organic Matter. Environmental Science & Technology, 2012, 46, 1556-1564.	4.6	256
52	Reactive Depth and Performance of an Electrochemical Carbon Nanotube Network as a Function of Mass Transport. ACS Applied Materials & Interfaces, 2012, 4, 6096-6103.	4.0	52
53	Reactive Transport Mechanism for Organic Oxidation during Electrochemical Filtration: Mass-Transfer, Physical Adsorption, and Electron-Transfer. Journal of Physical Chemistry C, 2012, 116, 374-383.	1.5	180
54	Reductive degradation of perfluoroalkyl compounds with aquated electrons generated from iodide photolysis at 254 nm. Photochemical and Photobiological Sciences, 2011, 10, 1945-1953.	1.6	76

#	Article	IF	CITATIONS
55	Sorption of Perfluorochemicals to Granular Activated Carbon in the Presence of Ultrasound. Journal of Physical Chemistry A, 2011, 115, 2250-2257.	1.1	71
56	Electrochemical Multiwalled Carbon Nanotube Filter for Viral and Bacterial Removal and Inactivation. Environmental Science & amp; Technology, 2011, 45, 3672-3679.	4.6	345
57	Electrochemical Carbon Nanotube Filter for Adsorption, Desorption, and Oxidation of Aqueous Dyes and Anions. Journal of Physical Chemistry C, 2011, 115, 3621-3629.	1.5	190
58	Covalent Binding of Single-Walled Carbon Nanotubes to Polyamide Membranes for Antimicrobial Surface Properties. ACS Applied Materials & Interfaces, 2011, 3, 2869-2877.	4.0	313
59	Electrochemical Carbon Nanotube Filter Oxidative Performance as a Function of Surface Chemistry. Environmental Science & Technology, 2011, 45, 9726-9734.	4.6	160
60	Multiwalled Carbon Nanotube Filter: Improving Viral Removal at Low Pressure. Langmuir, 2010, 26, 14975-14982.	1.6	102
61	Sonochemical Degradation of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Groundwater: Kinetic Effects of Matrix Inorganics. Environmental Science & Technology, 2010, 44, 445-450.	4.6	153
62	Sonolytic Decomposition of Aqueous Bioxalate in the Presence of Ozone. Journal of Physical Chemistry A, 2010, 114, 4968-4980.	1.1	47
63	Sonochemical Degradation of Perfluorooctanesulfonate in Aqueous Film-Forming Foams. Environmental Science & Technology, 2010, 44, 432-438.	4.6	114
64	Electronic-Structure-Dependent Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes. ACS Nano, 2010, 4, 5471-5479.	7.3	456
65	Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Frontiers of Environmental Science and Engineering in China, 2009, 3, 129-151.	0.8	344
66	Perfluorinated Surfactant Chain-Length Effects on Sonochemical Kinetics. Journal of Physical Chemistry A, 2009, 113, 9834-9842.	1.1	101
67	Reductive Defluorination of Aqueous Perfluorinated Alkyl Surfactants: Effects of Ionic Headgroup and Chain Length. Journal of Physical Chemistry A, 2009, 113, 690-696.	1.1	251
68	Electrochemical Water Splitting Coupled with Organic Compound Oxidation: The Role of Active Chlorine Species. Journal of Physical Chemistry C, 2009, 113, 7935-7945.	1.5	148
69	Solar-Powered Electrochemical Oxidation of Organic Compounds Coupled with the Cathodic Production of Molecular Hydrogen. Journal of Physical Chemistry A, 2008, 112, 7616-7626.	1.1	89
70	Solar-Powered Production of Molecular Hydrogen from Water. Journal of Physical Chemistry C, 2008, 112, 885-889.	1.5	70
71	Kinetics and Mechanism of the Sonolytic Conversion of the Aqueous Perfluorinated Surfactants, Perfluorooctanoate (PFOA), and Perfluorooctane Sulfonate (PFOS) into Inorganic Products. Journal of Physical Chemistry A, 2008, 112, 4261-4270.	1.1	203
72	Sonochemical Degradation of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Landfill Groundwater: Environmental Matrix Effects. Environmental Science & Technology, 2008, 42, 8057-8063.	4.6	231

#	Article	IF	CITATIONS
73	Experimental Anion Affinities for the Air/Water Interface. Journal of Physical Chemistry B, 2006, 110, 25598-25602.	1.2	140
74	CF3(CF2)7(CH2)2SH Self-Assembled on Au and Subsequent Degradation Under the Influence of Ionizing Radiation as Measured by XPS. Surface Science Spectra, 2001, 8, 32-38.	0.3	2