Jerzy Bochnia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1216379/publications.pdf Version: 2024-02-01

IEDZY ROCHNIA

#	Article	IF	CITATIONS
1	The Influence of Printing Orientation on Surface Texture Parameters in Powder Bed Fusion Technology with 316L Steel. Micromachines, 2020, 11, 639.	2.9	30
2	Investigating the stress relaxation of photopolymer O-ring seal models. Rapid Prototyping Journal, 2014, 20, 533-540.	3.2	29
3	A Comparative Study of the Mechanical Properties of FDM 3D Prints Made of PLA and Carbon Fiber-Reinforced PLA for Thin-Walled Applications. Materials, 2021, 14, 7062.	2.9	29
4	An Analysis Of Tensile Test Results to Assess the Innovation Risk for an Additive Manufacturing Technology. Metrology and Measurement Systems, 2015, 22, 127-138.	1.4	27
5	Estimating the Uncertainty of Tensile Strength Measurement for A Photocured Material Produced by Additive Manufacturing. Metrology and Measurement Systems, 2014, 21, 553-560.	1.4	26
6	Waviness of Freeform Surface Characterizations from Austenitic Stainless Steel (316L) Manufactured by 3D Printing-Selective Laser Melting (SLM) Technology. Materials, 2020, 13, 4372.	2.9	24
7	Tensile Strength Analysis of Thin-Walled Polymer Glass Fiber Reinforced Samples Manufactured by 3D Printing Technology. Polymers, 2020, 12, 2783.	4.5	23
8	Stress and strain measurements in static tensile tests. Metrology and Measurement Systems, 2012, 19, 531-540.	1.4	20
9	Fractional relaxation model of materials obtained with selective laser sintering technology. Rapid Prototyping Journal, 2019, 25, 76-86.	3.2	19
10	A Numerical Analysis of the Temperature Distributions in Face Sealing Rings. Procedia Engineering, 2012, 39, 366-378.	1.2	14
11	Analysis of Metrological Quality and Mechanical Properties of Models Manufactured with Photo-Curing PolyJet Matrix Technology for Medical Applications. Polymers, 2022, 14, 408.	4.5	13
12	Stress Relaxation and Creep of a Polymer-Aluminum Composite Produced through Selective Laser Sintering. Polymers, 2020, 12, 830.	4.5	11
13	Estimating the Approximation Uncertainty for Digital Materials Subjected to Stress Relaxation Tests. Metrology and Measurement Systems, 2016, 23, 545-553.	1.4	8
14	Ideal Material Models for Engineering Calculations. Procedia Engineering, 2012, 39, 98-110.	1.2	3
15	The use of 3D scanning in reverse engineering. , 2019, , 194-196.	0.1	2
16	Methods of Prototyping Process Using Modern Additive Technologies. Solid State Phenomena, 0, 223, 199-208.	0.3	1
17	TESTS OF PTFE COMPOSITE MATERIALS FOR SLIDING RINGS. Vìsnik Sumsʹkogo Nacìonalʹnogo Agrarnogo Unìversitetu Serìâ: Mehanìzacìâ Ta Avtomatizacìâ VirobniÄih Procesìv, 2019, , 3-8.	0.0	0