Hye Young Koo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12163719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid Bead Air Filters with Low Pressure Drops at a High Flow Rate for the Removal of Particulate Matter and HCHO. Polymers, 2022, 14, 422.	2.0	2
2	Solar-Driven Unmanned Hazardous and Noxious Substance Trapping Devices Equipped with Reverse Piloti Structures and Cooling Systems. Polymers, 2022, 14, 631.	2.0	1
3	Ultrasonic spray pyrolysis for air-stable copper particles and their conductive films. Acta Materialia, 2021, 206, 116569.	3.8	16
4	Lattice Deformation-Induced Enhancement in Thermoelectric Properties of p-Type Bismuth Telluride-Based Alloys. Science of Advanced Materials, 2021, 13, 1358-1363.	0.1	1
5	Characterization of Bi–Te p-Type Thermoelectric Materials Produced by Uniaxial and Hydrostatic Sintering Technologies. Journal of Nanoscience and Nanotechnology, 2020, 20, 427-432.	0.9	2
6	NiCo2S4 Nanotrees Directly Grown on the Nickel NP-Doped Reduced Graphene Oxides for Efficient Supercapacitors. Materials, 2019, 12, 2865.	1.3	4
7	A lottery draw machine-inspired movable air filter with high removal efficiency and low pressure drop at a high flow rate. Journal of Materials Chemistry A, 2019, 7, 6001-6011.	5.2	12
8	Surface Design of Separators for Oil/Water Separation with High Separation Capacity and Mechanical Stability. Langmuir, 2017, 33, 8012-8022.	1.6	11
9	Facile synthesis of mesoporous SiO2 nanoparticles using the mobility differences of etchants. RSC Advances, 2015, 5, 26223-26230.	1.7	4
10	The effect of loading on sintering and catalytic activity of Pt/SiO2 hybrid catalyst powders synthesized via spray pyrolysis. Korean Journal of Chemical Engineering, 2014, 31, 1980-1984.	1.2	5
11	Defect healing of reduced graphene oxide via intramolecular cross-dehydrogenative coupling. Nanotechnology, 2013, 24, 185604.	1.3	47
12	Gold nanoparticle-doped graphene nanosheets: sub-nanosized gold clusters nucleate and grow at the nitrogen-induced defects on graphene surfaces. Journal of Materials Chemistry, 2012, 22, 7130.	6.7	26
13	Large-Scale Synthesis and CO Oxidation Study of FeCr Alloy Supported Pt Nanocatalyst by Electrical Wire Explosion Process. Catalysis Letters, 2012, 142, 326-331.	1.4	9
14	Pb-free glass frits prepared by spray pyrolysis as inorganic binders of Al electrodes in Si solar cells. Journal of Alloys and Compounds, 2011, 509, 6325-6331.	2.8	25
15	Characteristics of ZnO–B2O3–SiO2–CaO glass frits prepared by spray pyrolysis as inorganic binder for Cu electrode. Journal of Alloys and Compounds, 2011, 509, 8077-8081.	2.8	11
16	Characteristics of nano-sized Ag-Pd (70-30)-glass composite powders prepared by flame spray pyrolysis. Journal of the Ceramic Society of Japan, 2011, 119, 23-28.	0.5	1
17	Properties of La0.8Sr0.2Ga0.8Mg0.2O2.8 electrolyte formed from the nano-sized powders prepared by spray pyrolysis. Journal of the Ceramic Society of Japan, 2011, 119, 752-756.	0.5	0
18	Size-controlled glass frits with spherical shape for Al electrodes in Si solar cells. Journal of the Ceramic Society of Japan, 2011, 119, 954-960.	0.5	1

HYE YOUNG KOO

#	Article	IF	CITATIONS
19	Characteristics of nanosized Bi-based glass powders prepared by flame spray pyrolysis as transparent dielectric layer material. Ceramics International, 2011, 37, 687-690.	2.3	2
20	Grapheneâ€Based Multifunctional Iron Oxide Nanosheets with Tunable Properties. Chemistry - A European Journal, 2011, 17, 1214-1219.	1.7	78
21	Characteristics of Ag–Pd–glass composite and Ag–Pd alloy powders prepared by spray pyrolysis. Powder Technology, 2011, 207, 318-323.	2.1	Ο
22	Characteristics of Pb-based glass powders prepared by spray pyrolysis as inorganic additive of Al paste for solar cell. Solar Energy Materials and Solar Cells, 2011, 95, 34-38.	3.0	4
23	Preparation of silver-glass composite powder and conducting film. Journal of the Ceramic Society of Japan, 2010, 118, 353-356.	0.5	2
24	Effect of preparation conditions on the properties of silver-glass composite powders prepared by spray pyrolysis. Journal of the Ceramic Society of Japan, 2010, 118, 25-29.	0.5	2
25	Properties of nano-sized glass powders prepared by flame spray pyrolysis as an inorganic binder in ink-jet printing. Journal of the Ceramic Society of Japan, 2010, 118, 613-616.	0.5	2
26	BaMgAl10O17: Eu2+ phosphor powders prepared from precursor powders with a hollow and thin wall structure containing NH4F flux. Electronic Materials Letters, 2010, 6, 81-86.	1.0	6
27	Eu-doped B2O3–ZnO–PbO glass phosphor powders withÂspherical shape and fine size prepared by spray pyrolysis. Applied Physics A: Materials Science and Processing, 2010, 98, 671-677.	1.1	2
28	Characteristics of BaNd2Ti5O14 powders directly prepared by high-temperature spray pyrolysis. Ceramics International, 2010, 36, 63-68.	2.3	2
29	Effect of precursor types on the characteristics of the Pb-based glass powders prepared by spray pyrolysis. Ceramics International, 2010, 36, 395-399.	2.3	1
30	Firing characteristics of size-controlled silver–glass composite powders prepared by spray pyrolysis. Powder Technology, 2010, 198, 347-353.	2.1	5
31	Characteristics of Y3Al5O12:Ce phosphor powders prepared by spray pyrolysis from ethylenediaminetetraacetic acid solution. Ceramics International, 2010, 36, 611-615.	2.3	41
32	Size-controlled Bi-based glass powders prepared by spray pyrolysis as inorganic additives for silver electrode. Ceramics International, 2010, 36, 1171-1176.	2.3	4
33	Characteristics of Bi-based glass powders with various glass transition temperatures prepared by spray pyrolysis. Ceramics International, 2010, 36, 1749-1753.	2.3	3
34	Characteristics of Ag powders coated with Pb-based glass material prepared by spray pyrolysis under various gas environments. Ceramics International, 2010, 36, 2477-2483.	2.3	3
35	Nano-sized silver powders coated with Pb-based glass material with high glass transition temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 361, 45-50.	2.3	5
36	Characteristics of nano-sized silver–glass composite powders prepared by flame spray pyrolysis. Journal of Alloys and Compounds, 2010, 489, 456-460.	2.8	7

HYE YOUNG KOO

#	Article	IF	CITATIONS
37	Fine size Pb-based glass frit with spherical shape as the inorganic binder of Al electrode for Si solar cells. Journal of Alloys and Compounds, 2010, 490, 488-492.	2.8	21
38	Characteristics of Pb-based glass frit prepared by spray pyrolysis as the inorganic binder of silver electrode for Si solar cells. Journal of Alloys and Compounds, 2010, 490, 582-588.	2.8	16
39	Characteristics of silver–glass composite powders as the silver electrode for Si solar cells. Journal of Alloys and Compounds, 2010, 491, 584-588.	2.8	14
40	Effect of gas environment on the properties of silver–glass composite powders with core–shell structure prepared by spray pyrolysis. Journal of Alloys and Compounds, 2010, 492, 723-730.	2.8	2
41	Effect of preparation conditions and types of spray solutions on the formation of nano-sized silver–glass composite powders in flame spray pyrolysis. Journal of Alloys and Compounds, 2010, 496, 536-542.	2.8	1
42	Characteristics of Bi-based glass frit having similar mean size and morphology to those of silver powders at high firing temperatures. Journal of Alloys and Compounds, 2010, 497, 259-266.	2.8	28
43	Characteristics of the glass powders with low Pb content directly prepared by spray pyrolysis. Journal of Alloys and Compounds, 2010, 502, 158-162.	2.8	2
44	Fine size (Y,Gd)BO3:Eu phosphor powders prepared from precursor powders with hollow shape and large size. Journal of Alloys and Compounds, 2010, 503, 260-265.	2.8	6
45	The Role of Carbon Black in the Preparation of GdPO ₄ :Tb Phosphor Powders by Spray Pyrolysis. Japanese Journal of Applied Physics, 2009, 48, 116503.	0.8	2
46	The effects of glass powders prepared by spray pyrolysis on the structures and conductivities of silver electrode. Materials Chemistry and Physics, 2009, 118, 25-31.	2.0	6
47	Fine-sized BaMgAl10O17:Eu2+ phosphor powders prepared by spray pyrolysis from the spray solution with BaF2 flux. Ceramics International, 2009, 35, 2651-2657.	2.3	10
48	Fine-sized Y3Al5O12:Ce phosphor powders prepared by spray pyrolysis from the spray solution with barium fluoride flux. Journal of Alloys and Compounds, 2009, 477, 776-779.	2.8	63
49	Firing characteristics of La0.8Sr0.2Ga0.8Mg0.2O3â^î^ electrolyte powders prepared by spray pyrolysis. Journal of Alloys and Compounds, 2009, 487, 693-697.	2.8	11
50	Characteristics of carbon-glass composite powders with spherical shape and submicron size prepared by spray pyrolysis from colloidal spray solution. Journal of the Ceramic Society of Japan, 2009, 117, 1277-1280.	0.5	0
51	Firing characteristics of nano-sized glass powders prepared by flame spray pyrolysis for electrode application. Journal of the Ceramic Society of Japan, 2009, 117, 1311-1316.	0.5	7
52	Direct Growth of Optically Stable Gold Nanorods onto Polyelectrolyte Multilayered Capsules. Small, 2008, 4, 742-745.	5.2	18
53	Polyelectrolyte Multilayerâ€Mediated Growth of Gold Nanoparticle Films with Tunable Loading Density and Nanoparticle Shape. Macromolecular Rapid Communications, 2008, 29, 520-524.	2.0	13
54	Eu-doped Ca8Mg(SiO4)4Cl2 phosphor particles prepared by spray pyrolysis from the colloidal spray solution containing ammonium chloride. Journal of Alloys and Compounds, 2008, 457, 429-434.	2.8	24

HYE YOUNG KOO

#	Article	IF	CITATIONS
55	Ca7.97-xMg(SiO4)4Cl2:Eu0.03,Dx(D=Y, Gd, Mn) Phosphor Particles Prepared by Spray Pyrolysis. Japanese Journal of Applied Physics, 2008, 47, 163-166.	0.8	6
56	Effects ofN,N-Dimethylacetamide as Drying Control Chemical Additive on Characteristics of Zn2SiO4:Mn,Ba Phosphor Powders Prepared by Spray Pyrolysis. Japanese Journal of Applied Physics, 2008, 47, 7407-7411.	0.8	4
57	Effects of amide types DCCAs on the properties of Y2O3:Eu phosphor powders with spherical shape and fine size. Journal of the Ceramic Society of Japan, 2008, 116, 955-959.	0.5	1
58	Blue-Emitting Eu-Doped (Sr, Mg)5(PO4)3Cl Phosphor Particles Prepared by Spray Pyrolysis from the Spray Solution Containing Ammonium Chloride. Journal of the Ceramic Society of Japan, 2007, 115, 955-959.	0.5	0
59	Effect of preparation temperature on the characteristics of PbO–B2O3–SiO2 glass powders with spherical shape. Journal of Alloys and Compounds, 2007, 428, 344-349.	2.8	20
60	Preparation of Bi2O3–B2O3–ZnO–BaO–SiO2 glass powders with spherical shape by spray pyrolysis. Journal of Alloys and Compounds, 2007, 437, 215-219.	2.8	32
61	Effects of Y/Gd Ratio and Boron Excess on Vacuum Ultraviolet Characteristics and Morphology of (Y,Gd)BO3:Eu Phosphor Particles Prepared by Spray Pyrolysis. Japanese Journal of Applied Physics, 2007, 46, 3424-3427.	0.8	3
62	Synthesis of raspberry-like particles using polyelectrolyte multilayer-coated particles. Journal of Materials Chemistry, 2007, 17, 4943.	6.7	29
63	The characteristics of the size-controlled Pb-based glass powders with spherical shape. Materials Letters, 2007, 61, 3669-3672.	1.3	7
64	Emulsion-Based Synthesis of Reversibly Swellable, Magnetic Nanoparticle-Embedded Polymer Microcapsules. Chemistry of Materials, 2006, 18, 3308-3313.	3.2	94
65	Synthesis of nanosized Co3O4 particles by spray pyrolysis. Journal of Alloys and Compounds, 2006, 417, 254-258.	2.8	47
66	Luminescence Characteristics of Eu-Doped Calcium Magnesium Chlorosilicate Phosphor Particles Prepared by Spray Pyrolysis. Japanese Journal of Applied Physics, 2006, 45, 1617-1622.	0.8	12
67	Direct Synthesis of High-Brightness (CeTb)MgAl11O19Phosphor Particles by Spray Pyrolysis with Boric Acid Flux. Japanese Journal of Applied Physics, 2006, 45, 116-120.	0.8	5
68	Effect of Boric Acid Flux and Drying Control Chemical Additive on the Characteristics of Y2O3:Eu Phosphor Particles Prepared by Spray Pyrolysis. Japanese Journal of Applied Physics, 2006, 45, 9083-9087.	0.8	9
69	"Graftingâ€From―Polymerization inside a Polyelectrolyte Hollowâ€Capsule Microreactor. Angewandte Chemie - International Edition, 2005, 44, 1096-1101.	7.2	52
70	"Graftingâ€From―Polymerization inside a Polyelectrolyte Hollowâ€Capsule Microreactor. Angewandte Chemie, 2005, 117, 1120-1125.	1.6	4