
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1216308/publications.pdf Version: 2024-02-01

Ιονικά Ο Βλομάτ

#	Article	IF	CITATIONS
1	Picking on Carbonate: Kinetic Selectivity in the Encapsulation of Anions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
2	Picking on Carbonate: Kinetic Selectivity in the Encapsulation of Anions. Angewandte Chemie, 2022, 134,	2.0	1
3	A double-decker cage for allosteric encapsulation of ATP. Chemical Communications, 2022, 58, 5992-5995.	4.1	2
4	Dissipative Formation of Covalent Basket Cages. Angewandte Chemie, 2022, 134, .	2.0	4
5	Dissipative Formation of Covalent Basket Cages. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19
6	Cross-reactive binding versus selective phosphate sensing in an imine macrocycle sensor. CheM, 2022, 8, 2228-2244.	11.7	5
7	A Hexapodal Capsule for the Recognition of Anions. Journal of the American Chemical Society, 2021, 143, 3874-3880.	13.7	40
8	From Selection to Instruction and Back: Competing Conformational Selection and Induced Fit Pathways in Abiotic Hosts. Angewandte Chemie, 2021, 133, 20095-20101.	2.0	4
9	From Selection to Instruction and Back: Competing Conformational Selection and Induced Fit Pathways in Abiotic Hosts. Angewandte Chemie - International Edition, 2021, 60, 19942-19948.	13.8	18
10	Molecular Recognition of Nerve Agents and Their Organophosphorus Surrogates: Toward Supramolecular Scavengers and Catalysts. Chemistry - A European Journal, 2021, 27, 13280-13305.	3.3	15
11	Enantioselective Legoâ€like Construction of Modular and Asymmetric Baskets. Angewandte Chemie, 2021, 133, 25279.	2.0	4
12	Frontispiece: Molecular Recognition of Nerve Agents and Their Organophosphorus Surrogates: Toward Supramolecular Scavengers and Catalysts. Chemistry - A European Journal, 2021, 27, .	3.3	0
13	Enantioselective Legoâ€like Construction of Modular and Asymmetric Baskets. Angewandte Chemie - International Edition, 2021, 60, 25075-25081.	13.8	8
14	A computational study of competing conformational selection and induced fit in an abiotic system. Physical Chemistry Chemical Physics, 2021, 24, 507-511.	2.8	1
15	Tuning the allosteric sequestration of anticancer drugs for developing cooperative nano-antidotes. Chemical Communications, 2020, 56, 1271-1274.	4.1	16
16	A highly diastereoselective synthesis of deep molecular baskets. Chemical Communications, 2020, 56, 10243-10246.	4.1	11
17	One-Pot Aldol Cascade for the Preparation of Isospiropyrans, Flavylium Salts, and bis-Spiropyrans. Journal of Organic Chemistry, 2020, 85, 8013-8020.	3.2	2
18	A Molecular Capsule with Revolving Doors Partitioning Its Inner Space. Chemistry - A European Journal, 2020, 26, 16480-16485.	3.3	0

#	Article	IF	CITATIONS
19	Photoinduced interruption of interannular cooperativity for delivery of cationic guests in water. Chemical Communications, 2020, 56, 2987-2990.	4.1	10
20	Multivalent Câ^'Hâ‹â‹â‹Cl/Brâ^'C Interactions Directing the Resolution of Dynamic and Twisted Capsules. Chemistry - A European Journal, 2019, 25, 13124-13130.	3.3	12
21	Twist–Turn–Twist Motif Chaperoned Inside Molecular Baskets. Journal of the American Chemical Society, 2019, 141, 16600-16604.	13.7	16
22	An easily accessible isospiropyran switch. Organic and Biomolecular Chemistry, 2019, 17, 9124-9128.	2.8	2
23	Photo-induced formation of organic nanoparticles possessing enhanced affinities for complexing nerve agent mimics. Chemical Communications, 2019, 55, 1987-1990.	4.1	13
24	On the encapsulation and assembly of anticancer drugs in a cooperative fashion. Chemical Science, 2019, 10, 5678-5685.	7.4	16
25	Stereo- and Regioselective Synthesis of Molecular Baskets. Journal of Organic Chemistry, 2019, 84, 4392-4401.	3.2	5
26	Stackable molecular chairs. Chemical Communications, 2019, 55, 5479-5482.	4.1	5
27	Multivalent Câ^'Hâ‹â‹ĉl/Brâ^'C Interactions Directing the Resolution of Dynamic and Twisted Csules. Chemistry - A European Journal, 2019, 25, 13048-13048.	3.3	0
28	A Hexavalent Basket for Bottomâ€Up Construction of Functional Soft Materials and Polyvalent Drugs through a "Click―Reaction. Chemistry - A European Journal, 2019, 25, 1242-1248.	3.3	5
29	Lightâ€Triggered Transformation of Molecular Baskets into Organic Nanoparticles. Chemistry - A European Journal, 2019, 25, 273-279.	3.3	10
30	A Stimuli-Responsive Molecular Capsule with Switchable Dynamics, Chirality, and Encapsulation Characteristics. Journal of the American Chemical Society, 2018, 140, 11091-11100.	13.7	49
31	Multivalent and Photoresponsive Assembly of Dual avity Baskets in Water. Chemistry - A European Journal, 2017, 23, 8829-8833.	3.3	6
32	Examining the Scope and Thermodynamics of Assembly in Nesting Complexes Comprising Molecular Baskets and TPA Ligands. Organic Letters, 2017, 19, 4932-4935.	4.6	10
33	Removal of Nerve Agent Simulants from Water Using Light-Responsive Molecular Baskets. Journal of the American Chemical Society, 2017, 139, 18496-18499.	13.7	31
34	Two-Dimensional Supramolecular Polymers Embodying Large Unilamellar Vesicles in Water. Journal of the American Chemical Society, 2016, 138, 11312-11317.	13.7	18
35	Assembly and Folding of Twisted Baskets in Organic Solvents. Organic Letters, 2016, 18, 4238-4241.	4.6	5
36	Gating the Trafficking of Molecules across Vesicular Membrane Composed of Dual-Cavity Baskets. Chemistry of Materials, 2016, 28, 8128-8131.	6.7	10

#	Article	IF	CITATIONS
37	Stereo- and regioselective halogenation of norbornenes directed by neighboring group participation. Tetrahedron Letters, 2016, 57, 5584-5587.	1.4	5
38	Russian Nesting Doll Complexes of Molecular Baskets and Zinc Containing TPA Ligands. Journal of the American Chemical Society, 2016, 138, 8253-8258.	13.7	31
39	On the Transfer of Chirality, Thermodynamic Stability, and Folding Characteristics of Stereoisomeric Gated Baskets. European Journal of Organic Chemistry, 2015, 2015, 6832-6840.	2.4	5
40	Twisted Baskets. Chemistry - A European Journal, 2015, 21, 3550-3555.	3.3	9
41	Ubiquitous Assembly of Amphiphilic Baskets into Unilamellar Vesicles and Their Recognition Characteristics. Organic Letters, 2015, 17, 852-855.	4.6	18
42	Fulleropyrrolidine molecular dumbbells act as multi-electron-acceptor triads. Spectroscopic, electrochemical, computational and morphological characterizations. RSC Advances, 2015, 5, 88241-88248.	3.6	7
43	Dual-Cavity Basket Promotes Encapsulation in Water in an Allosteric Fashion. Journal of the American Chemical Society, 2015, 137, 12276-12281.	13.7	35
44	Gated molecular baskets. Chemical Society Reviews, 2015, 44, 500-514.	38.1	80
45	On the Nature of the Transition State Characterizing Gated Molecular Encapsulations. Molecules, 2014, 19, 14292-14303.	3.8	2
46	Recognition Characteristics of an Adaptive Vesicular Assembly of Amphiphilic Baskets for Selective Detection and Mitigation of Toxic Nerve Agents. Journal of the American Chemical Society, 2014, 136, 17337-17342.	13.7	35
47	Trapping of Organophosphorus Chemical Nerve Agents in Water with Amino Acid Functionalized Baskets. Chemistry - A European Journal, 2014, 20, 4251-4256.	3.3	41
48	Urea-Catalyzed N–H Insertion–Arylation Reactions of Nitrodiazoesters. Journal of Organic Chemistry, 2014, 79, 4832-4842.	3.2	24
49	A Molecular Claw: A Dynamic Cavitand Host. Angewandte Chemie - International Edition, 2013, 52, 11313-11316.	13.8	19
50	Assembly of Amphiphilic Baskets into Stimuli-Responsive Vesicles. Developing a Strategy for the Detection of Organophosphorus Chemical Nerve Agents. Journal of the American Chemical Society, 2013, 135, 14964-14967.	13.7	63
51	On the role of guests in enforcing the mechanism of action of gated baskets. Organic and Biomolecular Chemistry, 2013, 11, 7667.	2.8	23
52	The Entrapment of Chiral Guests with Gated Baskets: Can a Kinetic Discrimination of Enantiomers Be Governed through Gating?. Chemistry - A European Journal, 2013, 19, 4767-4775.	3.3	22
53	Method for the Preparation of Derivatives of Heptiptycene: Toward Dual-Cavity Baskets. Journal of Organic Chemistry, 2013, 78, 2984-2991.	3.2	10
54	The Prospect of Selective Recognition of Nerve Agents with Modular Basket-like Hosts. A Structure–Activity Study of the Entrapment of a Series of Organophosphonates in Aqueous Media. Journal of Physical Chemistry B, 2013, 117, 3240-3249.	2.6	25

#	Article	IF	CITATIONS
55	A stereodynamic and redox-switchable encapsulation-complex containing a copper ion held by a tris-quinolinyl basket. Chemical Communications, 2012, 48, 4429.	4.1	19
56	Design, Preparation, and Study of Catalytic Gated Baskets. Journal of Organic Chemistry, 2012, 77, 2675-2688.	3.2	25
57	On the mechanism of action of gated molecular baskets: The synchronicity of the revolving motion of gates and in/out trafficking of guests. Beilstein Journal of Organic Chemistry, 2012, 8, 90-99.	2.2	6
58	An Acidâ€Catalyzed Cyclialkylation that Provides Rapid Access to a Twisted Molecular Basket. Chemistry - A European Journal, 2012, 18, 8301-8305.	3.3	5
59	Controlling dynamic stereoisomerism in transition-metal folded baskets. Chemical Science, 2011, 2, 752.	7.4	14
60	Controlling the dynamics of molecular encapsulation and gating. Chemical Society Reviews, 2011, 40, 1609-1622.	38.1	99
61	The Effect of the Dynamics of Revolving Gates on the Kinetics of Molecular Encapsulation—The Activity/Selectivity Relationship. Chemistry - A European Journal, 2011, 17, 2562-2565.	3.3	15
62	The Role of Chirality in Directing the Formation of Cupâ€Shaped Porphyrins and the Coordination Characteristics of such Hosts. Chemistry - A European Journal, 2011, 17, 8870-8881.	3.3	7
63	Kinetically and thermodynamically controlled syntheses of covalent molecular capsules. Advances in Physical Organic Chemistry, 2011, 45, 1-37.	0.5	15
64	Molecular Recognition of a Transition State. Angewandte Chemie - International Edition, 2010, 49, 4816-4819.	13.8	18
65	Gated Molecular Recognition and Dynamic Discrimination of Guests. Journal of the American Chemical Society, 2010, 132, 773-776.	13.7	39
66	Four-State Switching Characteristics of a Gated Molecular Basket. Organic Letters, 2009, 11, 2495-2498.	4.6	17
67	A close inspection of Ag(I) coordination to molecular baskets. A study of solvation and guest encapsulation in solution and the solid state. Tetrahedron, 2009, 65, 7213-7219.	1.9	8
68	Tuning the Rate of Molecular Translocation. Journal of the American Chemical Society, 2009, 131, 7250-7252.	13.7	39
69	Supramolecular Catalysis at Work:  Diastereoselective Synthesis of a Molecular Bowl with Dynamic Inner Space. Journal of Organic Chemistry, 2008, 73, 355-363.	3.2	32
70	Encapsulation of Guests within a Gated Molecular Basket: Thermodynamics and Selectivity. Organic Letters, 2008, 10, 5361-5364.	4.6	29
71	A 3-fold "Butterfly Valve―in Command of the Encapsulation's Kinetic Stability. Molecular Baskets at Work. Journal of the American Chemical Society, 2008, 130, 15127-15133.	13.7	40
72	Molecular Encapsulation via Metal-to-Ligand Coordination in a Cu(I)-Folded Molecular Basket. Journal of Organic Chemistry, 2008, 73, 5100-5109.	3.2	35

#	Article	IF	CITATIONS
73	Prospects in controlling morphology, dynamics and responsiveness of supramolecular polymers. Soft Matter, 2007, 3, 137-154.	2.7	61
74	Structureâ [~] 'Function Studies of Modular Aromatics That Form Molecular Organogels. Journal of Organic Chemistry, 2007, 72, 7270-7278.	3.2	62
75	Silver(I) Mediated Folding of a Molecular Basket. Organic Letters, 2007, 9, 2301-2304.	4.6	20
76	Operating Molecular Elevators. Journal of the American Chemical Society, 2006, 128, 1489-1499.	13.7	280
77	Template-Directed Synthesis of Mechanically Interlocked Molecular Bundles Using Dynamic Covalent Chemistry. Organic Letters, 2006, 8, 3899-3902.	4.6	87
78	Allosteric Regulation of the Conformational Dynamics of a Cavitand Receptor. Organic Letters, 2006, 8, 3697-3700.	4.6	10
79	Design, Synthesis, and Conformational Dynamics of a Gated Molecular Basket. Journal of the American Chemical Society, 2006, 128, 5887-5894.	13.7	70
80	Multivalency and Cooperativity in Supramolecular Chemistry. Accounts of Chemical Research, 2005, 38, 723-732.	15.6	609
81	The Exclusivity of Multivalency in Dynamic Covalent Processes. Angewandte Chemie - International Edition, 2004, 43, 3273-3278.	13.8	68
82	A Mechanically Interlocked Bundle. Chemistry - A European Journal, 2004, 10, 1926-1935.	3.3	80
83	Can Multivalency Be Expressed Kinetically? The Answer Is Yes. Journal of the American Chemical Society, 2004, 126, 2288-2289.	13.7	80
84	A Molecular Elevator. Science, 2004, 303, 1845-1849.	12.6	991
85	Conjugate of Palladium(II) Complex and β-Cyclodextrin Acts as a Biomimetic Peptidase. Journal of the American Chemical Society, 2004, 126, 696-697.	13.7	76
86	Controlling Multivalent Interactions in Triply-Threaded Two-Component Superbundles. Chemistry - A European Journal, 2003, 9, 5348-5360.	3.3	68
87	Reactivity of Organic Compounds Inside Micelles Embedded in Solâ^'Gel Glass. Kinetics of Isomerization of Azobenzene Inside CTAB and SDS Micelles Embedded in Silica Matrix. Journal of Physical Chemistry B, 2001, 105, 7482-7489.	2.6	11
88	Behavior of organic compounds confined in monoliths of sol–gel silica glass. Effects of guest–host hydrogen bonding on uptake, release, and isomerization of the guest compounds. Journal of Materials Chemistry, 2001, 11, 408-418.	6.7	36
89	Enantioselective Aminolysis of an α-Chloroester Catalyzed byCandida cylindraceaLipase Encapsulated in Solâ~'Gel Silica Glass. Organic Letters, 2001, 3, 2025-2028.	4.6	44
90	Unexpected Interactions between Solâ~'Gel Silica Glass and Guest Molecules. Extraction of Aromatic Hydrocarbons into Polar Silica from Hydrophobic Solvents. Journal of Physical Chemistry B, 2000, 104, 11081-11087.	2.6	35

#	Article	IF	CITATIONS
91	Effects of Encapsulation in Solâ~Gel Silica Glass on Esterase Activity, Conformational Stability, and Unfolding of Bovine Carbonic Anhydrase II. Chemistry of Materials, 1999, 11, 3671-3679.	6.7	89