
Giovanni Migliaccio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12162155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of NuRSERY, a new functional HDAC complex composed by HDAC5, GATA1, EKLF and pERK present in human erythroid cells. International Journal of Biochemistry and Cell Biology, 2014, 50, 112-122.	2.8	23
2	Under HEMA conditions, self-replication of human erythroblasts is limited by autophagic death. Blood Cells, Molecules, and Diseases, 2011, 47, 182-197.	1.4	35
3	Recovery and Biodistribution ofEx VivoExpanded Human Erythroblasts Injected into NOD/SCID/IL2RÎ ³ nullmice. Stem Cells International, 2011, 2011, 1-13.	2.5	14
4	Phenotypic Definition of the Progenitor Cells with Erythroid Differentiation Potential Present in Human Adult Blood. Stem Cells International, 2011, 2011, 1-9.	2.5	16
5	The dominant negative β isoform of the glucocorticoid receptor is uniquely expressed in erythroid cells expanded from polycythemia vera patients. Blood, 2011, 118, 425-436.	1.4	47
6	Humanized Culture Medium for Clinical Expansion of Human Erythroblasts. Cell Transplantation, 2010, 19, 453-469.	2.5	73
7	Getting personal with B19 parvovirus. Blood, 2010, 115, 922-923.	1.4	3
8	Dynamic regulation of Gata1 expression during the maturation of conventional dendritic cells. Experimental Hematology, 2010, 38, 489-503.e1.	0.4	11
9	Evidence for organâ€ s pecific stem cell microenvironments. Journal of Cellular Physiology, 2010, 223, 460-470.	4.1	6
10	Increased Differentiation of Dermal Mast Cells in Mice Lacking the Mpl Gene. Stem Cells and Development, 2009, 18, 1081-1092.	2.1	3
11	Interaction between the glucocorticoid and erythropoietin receptors inÂhumanÂerythroid cells. Experimental Hematology, 2009, 37, 559-572.	0.4	41
12	Removal of the Spleen in Mice Alters the Cytokine Expression Profile of the Marrow Microâ€environment and Increases Bone Formation. Annals of the New York Academy of Sciences, 2009, 1176, 77-86.	3.8	9
13	TRANSPLANTATION AND CELLULAR ENGINEERING: Longâ€ŧerm storage does not alter functionality of in vitro generated human erythroblasts: implications for ex vivo generated erythroid transfusion products. Transfusion, 2009, 49, 2668-2679.	1.6	5
14	Erythroid cells in vitro: from developmental biology to blood transfusion products. Current Opinion in Hematology, 2009, 16, 259-268.	2.5	57
15	Gata1 expression driven by the alternative HS2 enhancer in the spleen rescues the hematopoietic failure induced by the hypomorphic Gata1low mutation. Blood, 2009, 114, 2107-2120.	1.4	26
16	Thrombopoietin Inhibits Murine Mast Cell Differentiation. Stem Cells, 2008, 26, 912-919.	3.2	20
17	Altered SDF-1/CXCR4 axis in patients with primary myelofibrosis and in the Gata1low mouse model of the disease. Experimental Hematology, 2008, 36, 158-171.	0.4	50
18	Human Erythroblasts Generated in Vitro Remain Functional with a Normal Karyotype 8 Years after Cryopreservation: Implications for Ex Vivo Generated Erythroid Transfusion Products Blood, 2008, 112, 2303-2303.	1.4	1

GIOVANNI MIGLIACCIO

#	Article	IF	CITATIONS
19	Dynamic Pattern of Adhesion Receptor Expression during the Maturation of Ex-Vivo Generated Human Adult and Neonatal Erythroid Cells Blood, 2008, 112, 997-997.	1.4	2
20	Identification of Two New Synthetic Histone Deacetylase Inhibitors That Modulate Globin Gene Expression in Erythroid Cells from Healthy Donors and Patients with Thalassemia. Molecular Pharmacology, 2007, 72, 1111-1123.	2.3	30
21	The hypomorphic Gata1low mutation alters the proliferation/differentiation potential of the common megakaryocytic-erythroid progenitor. Blood, 2007, 109, 1460-1471.	1.4	48
22	Protein kinase Cα is differentially activated during neonatal and adult erythropoiesis and favors expression of a reporter gene under the control of theAγ globin-promoter in cellular models of hemoglobin switching. Journal of Cellular Biochemistry, 2007, 101, 411-424.	2.6	11
23	Interleukin-3 and erythropoietin cooperate in the regulation of the expression of erythroid-specific transcription factors during erythroid differentiation. Experimental Hematology, 2007, 35, 735-747.	0.4	6
24	Differential Amplification of Murine Bipotent Megakaryocytic/Erythroid Progenitor and Precursor Cells During Recovery from Acute and Chronic Erythroid Stress. Stem Cells, 2006, 24, 337-348.	3.2	25
25	Molecular Advances Toward the Understanding of the Patho-Biology of Idiopathic Myelofibrosis. Current Immunology Reviews, 2006, 2, 169-186.	1.2	1
26	A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-β1 in the development of myelofibrosis. Blood, 2005, 105, 3493-3501.	1.4	103
27	Variegation of the phenotype induced by the Gata1low mutation in mice of different genetic backgrounds. Blood, 2005, 106, 4102-4113.	1.4	32
28	Expression of signal transduction proteins during the differentiation of primary human erythroblasts. Journal of Cellular Physiology, 2005, 202, 831-838.	4.1	35
29	Spontaneous switch from Aγ- to β-globin promoter activity in a stable transfected dual reporter vector. Blood Cells, Molecules, and Diseases, 2005, 34, 174-180.	1.4	5
30	Isolation of TPO-dependent subclones from the multipotent 32D cell line. Blood Cells, Molecules, and Diseases, 2005, 35, 241-252.	1.4	4
31	Impaired GATA-1 expression and myelofibrosis in an animal model. Pathologie Et Biologie, 2004, 52, 275-279.	2.2	13
32	GATA-1 as a Regulator of Mast Cell Differentiation Revealed by the Phenotype of the GATA-1low Mouse Mutant. Journal of Experimental Medicine, 2003, 197, 281-296.	8.5	203
33	Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1low mice). Blood, 2002, 100, 1123-1132.	1.4	215
34	In Vitro Mass Production of Human Erythroid Cells from the Blood of Normal Donors and of Thalassemic Patients. Blood Cells, Molecules, and Diseases, 2002, 28, 169-180.	1.4	138
35	Accentuated response to phenylhydrazine and erythropoietin in mice genetically impaired for their GATA-1 expression (GATA-1low mice). Blood, 2001, 97, 3040-3050.	1.4	62
36	Identification and characterization of a bipotent (erythroid and megakaryocytic) cell precursor from the spleen of phenylhydrazine-treated mice. Blood, 2000, 95, 2559-2568.	1.4	81

GIOVANNI MIGLIACCIO

#	Article	IF	CITATIONS
37	Stable and unstable transgene integration sites in the human genome: extinction of the Green Fluorescent Protein transgene in K562 cells. Gene, 2000, 256, 197-214.	2.2	43
38	Stem cell factor induces proliferation and differentiation of fetal progenitor cells in the mouse. British Journal of Haematology, 1998, 101, 676-687.	2.5	34
39	Circulating Hematopoietic Stem Cell Populations in Human Fetuses: Implications for Fetal Gene Therapy and Alterations with in utero Red Cell Transfusion. Fetal Diagnosis and Therapy, 1996, 11, 231-240.	1.4	11
40	Circulating Progenitor Cells in Human Ontogenesis: Response to Growth Factors and Replating Potential. Stem Cells and Development, 1996, 5, 161-170.	1.0	30
41	Induction of the murine ?W phenotype? in long-term cultures of human cord blood cells by c-kit antisense oligomers. Journal of Cellular Physiology, 1993, 157, 158-163.	4.1	5
42	The generation of colony-forming cells (CFC) and the expansion of hematopoiesis in cultures of human cord blood cells is dependent on the presence of stem cell factor (SCF). Cytotechnology, 1993, 11, 107-113.	1.6	4
43	The biology of stem cell factor, a new hematopietic growth factor involved in stem cell regulation. International Journal of Clinical and Laboratory Research, 1993, 23, 70-77.	1.0	18
44	Long-Term Generation of Colony-Forming Cells (CFC) from CD34+Human Umbilical Cord Blood Cells. Leukemia and Lymphoma, 1993, 11, 263-273.	1.3	20
45	Aspects of the biology of the neonatal hematopoietic stem cell. Stem Cells, 1993, 11, 56-64.	3.2	4
46	Effects of recombinant human stem cell factor (SCF) on the growth of human progenitor cells in vitro. Journal of Cellular Physiology, 1991, 148, 503-509.	4.1	74
47	Progressive inactivation of the expression of an erythroid transcriptional factor in GM- and G-CSF-dependent myeloid cell lines. Nucleic Acids Research, 1990, 18, 6863-6869.	14.5	63
48	Cloning of human erythroid progenitors (BFU-E) in the absence of fetal bovine serum. British Journal of Haematology, 1987, 67, 129-133.	2.5	51