Marco J Herold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1216070/publications.pdf

Version: 2024-02-01

119 papers	8,719 citations	42 h-index	48187 88 g-index
P - P - 0 2 9			8
130 all docs	130 docs citations	130 times ranked	14460 citing authors

#	Article	IF	CITATIONS
1	The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature, 2016, 538, 477-482.	13.7	830
2	How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?. Cell Death and Differentiation, 2018, 25, 104-113.	5.0	820
3	Apoptotic Caspases Suppress mtDNA-Induced STING-Mediated Type I IFN Production. Cell, 2014, 159, 1549-1562.	13.5	698
4	Emerging connectivity of programmed cell death pathways and its physiological implications. Nature Reviews Molecular Cell Biology, 2020, 21, 678-695.	16.1	465
5	Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes and Development, 2012, 26, 120-125.	2.7	344
6	An Inducible Lentiviral Guide RNA Platform Enables the Identification of Tumor-Essential Genes and Tumor-Promoting Mutations InÂVivo. Cell Reports, 2015, 10, 1422-1432.	2.9	337
7	NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspaseâ€4 and caspaseâ€5. European Journal of Immunology, 2015, 45, 2918-2926.	1.6	283
8	The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nature Immunology, 2013, 14, 389-395.	7.0	264
9	Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3+ regulatory T cells. Nature Immunology, 2013, 14, 959-965.	7.0	209
10	Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature, 2020, 577, 103-108.	13.7	198
11	Glucocorticoids exert opposing effects on macrophage function dependent on their concentration. Immunology, 2007, 122, 47-53.	2.0	174
12	Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in <i>p53</i> . Genes and Development, 2014, 28, 58-70.	2.7	156
13	Inducible and reversible gene silencing by stable integration of an shRNA-encoding lentivirus in transgenic rats. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18507-18512.	3.3	149
14	Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Science Translational Medicine, 2017, 9, .	5.8	148
15	Hierarchy for targeting prosurvival BCL2 family proteins in multiple myeloma: pivotal role of MCL1. Blood, 2016, 128, 1834-1844.	0.6	127
16	BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death and Disease, 2019, 10, 342.	2.7	125
17	DNA repair processes are critical mediators of p53-dependent tumor suppression. Nature Medicine, 2018, 24, 947-953.	15.2	122
18	Myeloid-Derived Suppressor Activity Is Mediated by Monocytic Lineages Maintained by Continuous Inhibition of Extrinsic and Intrinsic Death Pathways. Immunity, 2014, 41, 947-959.	6.6	121

#	Article	IF	CITATIONS
19	VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nature Communications, 2018, 9, 4976.	5.8	110
20	The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nature Immunology, 2020, 21, 1205-1218.	7.0	110
21	Modeling Breast Cancer Using CRISPR-Cas9–Mediated Engineering of Human Breast Organoids. Journal of the National Cancer Institute, 2020, 112, 540-544.	3.0	104
22	Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo. Cell Death and Differentiation, 2017, 24, 878-888.	5.0	103
23	Flexible Usage and Interconnectivity of Diverse Cell Death Pathways Protect against Intracellular Infection. Immunity, 2020, 53, 533-547.e7.	6.6	98
24	Reduced Expression of the Mevalonate Pathway Enzyme Farnesyl Pyrophosphate Synthase Unveils Recognition of Tumor Cells by VÎ ³ 9VÎ 2 T Cells. Journal of Immunology, 2009, 182, 8118-8124.	0.4	90
25	Maximal killing of lymphoma cells by DNA damage–inducing therapy requires not only the p53 targets Puma and Noxa, but also Bim. Blood, 2010, 116, 5256-5267.	0.6	87
26	Single-Cell Transcriptomics Identifies the Adaptation of Scart1+ $V\hat{1}^3$ 6+ T Cells to Skin Residency as Activated Effector Cells. Cell Reports, 2019, 27, 3657-3671.e4.	2.9	79
27	The BH3-Only Proteins Bim and Puma Cooperate to Impose Deletional Tolerance of Organ-Specific Antigens. Immunity, 2012, 37, 451-462.	6.6	75
28	A nonâ€canonical function of Ezh2 preserves immune homeostasis. EMBO Reports, 2017, 18, 619-631.	2.0	73
29	PECylation of interferon α2 improves lymphatic exposure after subcutaneous and intravenous administration and improves antitumour efficacy against lymphatic breast cancer metastases. Journal of Controlled Release, 2013, 168, 200-208.	4.8	70
30	Humanized Mcl-1 mice enable accurate preclinical evaluation of MCL-1 inhibitors destined for clinical use. Blood, 2018, 132, 1573-1583.	0.6	67
31	Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer. ELife, 2016, 5, .	2.8	65
32	DR5 and caspase-8 are dispensable in ER stress-induced apoptosis. Cell Death and Differentiation, 2017, 24, 944-950.	5.0	65
33	Dual Targeting of CDK4/6 and BCL2 Pathways Augments Tumor Response in Estrogen Receptor–Positive Breast Cancer. Clinical Cancer Research, 2020, 26, 4120-4134.	3.2	65
34	PRMT1-mediated H4R3me2a recruits SMARCA4 to promote colorectal cancer progression by enhancing EGFR signaling. Genome Medicine, 2021, 13, 58.	3.6	62
35	Loss of NF-κB1 Causes Gastric Cancer with Aberrant Inflammation and Expression of Immune Checkpoint Regulators in a STAT-1-Dependent Manner. Immunity, 2018, 48, 570-583.e8.	6.6	61
36	Interferon- \hat{I}^3 primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. Immunity, 2022, 55, 423-441.e9.	6.6	61

#	Article	IF	Citations
37	Characterisation of mice lacking all functional isoforms of the pro-survival BCL-2 family member A1 reveals minor defects in the haematopoietic compartment. Cell Death and Differentiation, 2017, 24, 534-545.	5.0	60
38	Transcription Factor PU.1 Promotes Conventional Dendritic Cell Identity and Function via Induction of Transcriptional Regulator DC-SCRIPT. Immunity, 2019, 50, 77-90.e5.	6.6	59
39	Mutually exclusive regulation of T cell survival by IL-7R and antigen receptor-induced signals. Nature Communications, 2013, 4, 1735.	5.8	56
40	The Stability and Anti-apoptotic Function of A1 Are Controlled by Its C Terminus. Journal of Biological Chemistry, 2006, 281, 13663-13671.	1.6	52
41	Targeting antiapoptotic A1/Bfl-1 by in vivo RNAi reveals multiple roles in leukocyte development in mice. Blood, 2012, 119, 6032-6042.	0.6	52
42	Synergistic targeting of breast cancer stemâ€like cells by human γδT cells and CD8 ⁺ T cells. Immunology and Cell Biology, 2017, 95, 620-629.	1.0	51
43	Mitochondria-Dependent Caspase-9 Activation Is Necessary for Antigen Receptor-Mediated Effector Caspase Activation and Apoptosis in WEHI 231 Lymphoma Cells. Journal of Immunology, 2002, 168, 3902-3909.	0.4	50
44	Macrophage and neutrophil death programs differentially confer resistance to tuberculosis. Immunity, 2021, 54, 1758-1771.e7.	6.6	46
45	A1/Bfl-1 in leukocyte development and cell death. Experimental Cell Research, 2012, 318, 1291-1303.	1.2	44
46	Prosurvival Bcl-2 family members reveal a distinct apoptotic identity between conventional and plasmacytoid dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4044-4049.	3.3	43
47	Combination of IAP antagonist and IFN \hat{I}^3 activates novel caspase-10- and RIPK1-dependent cell death pathways. Cell Death and Differentiation, 2017, 24, 481-491.	5.0	43
48	TRIM17 and TRIM28 antagonistically regulate the ubiquitination and anti-apoptotic activity of BCL2A1. Cell Death and Differentiation, 2019, 26, 902-917.	5.0	42
49	ROCK1 but not LIMK1 or PAK2 is a key regulator of apoptotic membrane blebbing and cell disassembly. Cell Death and Differentiation, 2020, 27, 102-116.	5.0	40
50	The ubiquitylation of IL- $1\hat{l}^2$ limits its cleavage by caspase-1 and targets it for proteasomal degradation. Nature Communications, 2021, 12, 2713.	5.8	40
51	An update on using CRISPR/Cas9 in the one-cell stage mouse embryo for generating complex mutant alleles. Cell Death and Differentiation, 2017, 24, 1821-1822.	5.0	38
52	Loss of p53 Causes Stochastic Aberrant X-Chromosome Inactivation and Female-Specific Neural Tube Defects. Cell Reports, 2019, 27, 442-454.e5.	2.9	37
53	TREML4 receptor regulates inflammation and innate immune cell death during polymicrobial sepsis. Nature Immunology, 2020, 21, 1585-1596.	7.0	36
54	Therapeutic Response to Non-genotoxic Activation of p53 by Nutlin3a Is Driven by PUMA-Mediated Apoptosis in Lymphoma Cells. Cell Reports, 2016, 14, 1858-1866.	2.9	35

#	Article	IF	CITATIONS
55	EBV BCL-2 homologue BHRF1 drives chemoresistance and lymphomagenesis by inhibiting multiple cellular pro-apoptotic proteins. Cell Death and Differentiation, 2020, 27, 1554-1568.	5.0	35
56	<scp>MDM4</scp> is a rational target for treating breast cancers with mutant p53. Journal of Pathology, 2017, 241, 661-670.	2.1	32
57	Acid Sphingomyelinase Is Required for Protection of Effector Memory T Cells against Glucocorticoid-Induced Cell Death. Journal of Immunology, 2011, 187, 4509-4516.	0.4	30
58	BET inhibition represses miR17-92 to drive BIM-initiated apoptosis of normal and transformed hematopoietic cells. Leukemia, 2016, 30, 1531-1541.	3.3	29
59	The BCL-2 pro-survival protein A1 is dispensable for T cell homeostasis on viral infection. Cell Death and Differentiation, 2017, 24, 523-533.	5.0	29
60	GM-CSF Quantity Has a Selective Effect on Granulocytic vs. Monocytic Myeloid Development and Function. Frontiers in Immunology, 2018, 9, 1922.	2.2	29
61	MARCH1-mediated ubiquitination of MHC II impacts the MHC I antigen presentation pathway. PLoS ONE, 2018, 13, e0200540.	1.1	29
62	An Erg-driven transcriptional program controls B cell lymphopoiesis. Nature Communications, 2020, 11, 3013.	5.8	29
63	Activation of the MAP Kinase Pathway Induces Apoptosis in the Merkel Cell Carcinoma Cell Line UISO. Journal of Investigative Dermatology, 2007, 127, 2116-2122.	0.3	27
64	Foxoâ€mediated <i>Bim</i> transcription is dispensable for the apoptosis of hematopoietic cells that is mediated by this BH3â€only protein. EMBO Reports, 2013, 14, 992-998.	2.0	26
65	Impact of conditional deletion of the pro-apoptotic BCL-2 family member BIM in mice. Cell Death and Disease, 2014, 5, e1446-e1446.	2.7	25
66	The combination of reduced MCL-1 and standard chemotherapeutics is tolerable in mice. Cell Death and Differentiation, 2017, 24, 2032-2043.	5.0	25
67	Hepatocyte growth factor renders BRAF mutant human melanoma cell lines resistant to PLX4032 by downregulating the pro-apoptotic BH3-only proteins PUMA and BIM. Cell Death and Differentiation, 2016, 23, 2054-2062.	5.0	24
68	Foxp1 Is Indispensable for Ductal Morphogenesis and Controls the Exit of Mammary Stem Cells from Quiescence. Developmental Cell, 2018, 47, 629-644.e8.	3.1	24
69	Using CRISPR/Cas9 Technology for Manipulating Cell Death Regulators. Methods in Molecular Biology, 2016, 1419, 253-264.	0.4	23
70	Characterisation of mice lacking the inflammatory caspases-1/11/12 reveals no contribution of caspase-12 to cell death and sepsis. Cell Death and Differentiation, 2019, 26, 1124-1137.	5.0	23
71	CD8+ T cell help is required for efficient induction of EAE in Lewis rats. Journal of Neuroimmunology, 2013, 260, 17-27.	1.1	20
72	Coordinated repression of BIM and PUMA by Epstein–Barr virus latent genes maintains the survival of Burkitt lymphoma cells. Cell Death and Differentiation, 2018, 25, 241-254.	5.0	20

#	Article	IF	Citations
73	Pro-apoptotic BIM is an essential initiator of physiological endothelial cell death independent of regulation by FOXO3. Cell Death and Differentiation, 2014, 21, 1687-1695.	5.0	19
74	CRISPR/Cas9: A tool for immunological research. European Journal of Immunology, 2018, 48, 576-583.	1.6	19
75	Proliferation Arrest in B-Raf Mutant Melanoma Cell Lines upon MAPK Pathway Activation. Journal of Investigative Dermatology, 2009, 129, 406-414.	0.3	18
76	The transcription factor IRF4 represses proapoptotic BMF and BIM to licence multiple myeloma survival. Leukemia, 2021, 35, 2114-2118.	3.3	18
77	Mining the Plasma Cell Transcriptome for Novel Cell Surface Proteins. International Journal of Molecular Sciences, 2018, 19, 2161.	1.8	17
78	Characterisation of a novel A1-specific monoclonal antibody. Cell Death and Disease, 2014, 5, e1553-e1553.	2.7	16
79	Potent efficacy of MCL-1 inhibitor-based therapies in preclinical models of mantle cell lymphoma. Oncogene, 2020, 39, 2009-2023.	2.6	16
80	HBO1 (KAT7) Does Not Have an Essential Role in Cell Proliferation, DNA Replication, or Histone 4 Acetylation in Human Cells. Molecular and Cellular Biology, 2020, 40, .	1.1	16
81	Anti-apoptotic A1 is not essential for lymphoma development in Eµ-Myc mice but helps sustain transplanted Eµ-Myc tumour cells. Cell Death and Differentiation, 2018, 25, 797-808.	5.0	15
82	Silencing of the Mineralocorticoid Receptor by Ribonucleic Acid Interference in Transgenic Rats Disrupts Endocrine Homeostasis. Molecular Endocrinology, 2008, 22, 1304-1311.	3.7	13
83	RAG-induced DNA lesions activate proapoptotic BIM to suppress lymphomagenesis in p53-deficient mice. Journal of Experimental Medicine, 2016, 213, 2039-2048.	4.2	13
84	Therapeutic blockade of CXCR2 rapidly clears inflammation in arthritis and atopic dermatitis models: demonstration with surrogate and humanized antibodies. MAbs, 2020, 12, 1856460.	2.6	13
85	Acquired Mutations in BAX Confer Resistance to BH3 Mimetics in Acute Myeloid Leukemia. Blood, 2020, 136, 7-8.	0.6	13
86	Ubiquitin-like protein 3 (UBL3) is required for MARCH ubiquitination of major histocompatibility complex class II and CD86. Nature Communications, 2022, 13, 1934.	5.8	13
87	Clearance of Measles Virus from Persistently Infected Cells by Short Hairpin RNA. Journal of Virology, 2009, 83, 9423-9431.	1.5	12
88	Ptpn2 and KLRG1 regulate the generation and function of tissue-resident memory CD8+ T cells in skin. Journal of Experimental Medicine, 2021, 218, .	4.2	12
89	Glucocorticoid-Induced Apoptosis in Animal Models of Multiple Sclerosis. Critical Reviews in Immunology, 2013, 33, 183-202.	1.0	9
90	A point mutation in the <i>Ncr1</i> signal peptide impairs the development of innate lymphoid cell subsets. Oncolmmunology, 2018, 7, e1475875.	2.1	9

#	Article	IF	CITATIONS
91	miR17~92 restrains pro-apoptotic BIM to ensure survival of haematopoietic stem and progenitor cells. Cell Death and Differentiation, 2020, 27, 1475-1488.	5.0	9
92	Myelodysplasia Syndrome, Clonal Hematopoiesis and Cardiovascular Disease. Cancers, 2021, 13, 1968.	1.7	9
93	BCL-XL antagonism selectively reduces neutrophil life span within inflamed tissues without causing neutropenia. Blood Advances, 2021, 5, 2550-2562.	2.5	9
94	Evidence against upstream regulation of the unfolded protein response (UPR) by pro-apoptotic BIM and PUMA. Cell Death and Disease, 2014, 5, e1354-e1354.	2.7	8
95	DNA-binding of the Tet-transactivator curtails antigen-induced lymphocyte activation in mice. Nature Communications, 2017, 8, 1028.	5.8	8
96	CRISPR base editing applications for identifying cancer-driving mutations. Biochemical Society Transactions, 2021, 49, 269-280.	1.6	8
97	Consequences of Zmat3 loss in c-MYC- and mutant KRAS-driven tumorigenesis. Cell Death and Disease, 2020, 11, 877.	2.7	7
98	Absence of pro-survival A1 has no impact on inflammatory cell survival in vivo during acute lung inflammation and peritonitis. Cell Death and Differentiation, 2022, 29, 96-104.	5.0	7
99	BCLâ€XL exerts a protective role against anemia caused by radiationâ€induced kidney damage. EMBO Journal, 2020, 39, e105561.	3.5	7
100	Stable silencing of the glucocorticoid receptor in myelinâ€specific T effector cells by retroviral delivery of shRNA: Insight into neuroinflammatory disease. European Journal of Immunology, 2009, 39, 2361-2370.	1.6	6
101	Critical cancer vulnerabilities identified by unbiased CRISPR/Cas9 screens inform on efficient cancer Immunotherapy. European Journal of Immunology, 2020, 50, 1871-1884.	1.6	6
102	The pro-survival Bcl-2 family member A1 delays spontaneous and FAS ligand-induced apoptosis of activated neutrophils. Cell Death and Disease, 2020, 11, 474.	2.7	6
103	A Hypomorphic Dars1D367Y Model Recapitulates Key Aspects of the Leukodystrophy HBSL. Frontiers in Cellular Neuroscience, 2020, 14, 625879.	1.8	6
104	<i>In vivo</i> genomeâ€editing screen identifies tumor suppressor genes that cooperate with <i>Trp53</i> loss during mammary tumorigenesis. Molecular Oncology, 2022, 16, 1119-1131.	2.1	6
105	Targeting platelets for improved outcome in KRAS-driven lung adenocarcinoma. Oncogene, 2020, 39, 5177-5186.	2.6	5
106	Epigenetic modulators of B cell fate identified through coupled phenotype-transcriptome analysis. Cell Death and Differentiation, 2022, 29, 2519-2530.	5.0	5
107	Male sterility in Mcl-1-flox mice is not due to enhanced Mcl1 protein stability. Cell Death and Disease, 2016, 7, e2490-e2490.	2.7	3
108	Loss of TRP53 reduces but does not overcome dependency of lymphoma cells on MCL-1. Cell Death and Differentiation, 2022, 29, 1074-1076.	5.0	3

#	Article	IF	CITATIONS
109	Ubiquitylation of RIPK3 beyond-the-RHIM can limit RIPK3 activity and cell death. IScience, 2022, 25, 104632.	1.9	3
110	Characterization of a novel human BFL-1-specific monoclonal antibody. Cell Death and Differentiation, 2020, 27, 826-828.	5.0	2
111	Caspase-2 does not play a critical role in cell death induction and bacterial clearance during Salmonella infection. Cell Death and Differentiation, 2021, 28, 3371-3373.	5.0	2
112	Loss of IRF4 Results in Multiple Myeloma Cell Apoptosis through the Transcriptional up-Regulation of the BH3-Only Proteins Bmf and BIM. Blood, 2019, 134, 3103-3103.	0.6	2
113	Removal of BFL-1 sensitises some melanoma cells to killing by BH3 mimetic drugs. Cell Death and Disease, 2022, 13, 301.	2.7	1
114	Case Study: CRISPR 101 $\hat{a} \in \hat{a}$ a novel online learning course harnessing innovative ways to teach a complex biomolecular technology. Essays in Biochemistry, 2022, , .	2.1	1
115	It's not over until the FAT lady sings. EMBO Journal, 2014, 33, n/a-n/a.	3.5	O
116	Evidence for Mutant p53 Gain-of-Function Effects in Normal Haemopoietic Cells and Myc-Driven Lymphoma. Blood, 2014, 124, 3589-3589.	0.6	0
117	Mutant p53 Enhances the Development and Sustained Growth of MYC-Driven Lymphoma and Exerts a Dominant Negative Effect Preferentially Deregulating Pathways for Metabolism and DNA Repair. Blood, 2016, 128, 1545-1545.	0.6	0
118	Identification of Genetic Pathways Controlling Resistance to Standard Combination Chemotherapy in Acute Myeloid Leukemia. Blood, 2018, 132, 2771-2771.	0.6	0
119	Targeting Control of Cell Cycle Enhances the Activity of Conventional Chemotherapy in Chemotherapy-Resistant Acute Myeloid Leukemia. Blood, 2021, 138, 2241-2241.	0.6	O