
Daniel Ayllon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1215948/publications.pdf Version: 2024-02-01

DANIEL AVILON

#	Article	IF	CITATIONS
1	The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism. Jasss, 2020, 23, .	1.8	349
2	Global warming threatens the persistence of Mediterranean brown trout. Global Change Biology, 2012, 18, 1549-1560.	9.5	158
3	Next-Generation Individual-Based Models Integrate Biodiversity and Ecosystems: Yes We Can, and Yes We Must. Ecosystems, 2017, 20, 229-236.	3.4	77
4	Ontogenetic and spatial variations in brown trout habitat selection. Ecology of Freshwater Fish, 2010, 19, 420-432.	1.4	71
5	Interactive effects of cover and hydraulics on brown trout habitat selection patterns. River Research and Applications, 2009, 25, 1051-1065.	1.7	60
6	InSTREAM-Gen: Modelling eco-evolutionary dynamics of trout populations under anthropogenic environmental change. Ecological Modelling, 2016, 326, 36-53.	2.5	53
7	Modelling carrying capacity dynamics for the conservation and management of territorial salmonids. Fisheries Research, 2012, 134-136, 95-103.	1.7	47
8	Local and global climatic drivers of Atlantic salmon decline in southern Europe. Fisheries Research, 2018, 198, 78-85.	1.7	46
9	THE INFLUENCE OF VARIABLE HABITAT SUITABILITY CRITERIA ON <scp>PHABSIM</scp> HABITAT INDEX RESULTS. River Research and Applications, 2012, 28, 1179-1188.	1.7	40
10	Ontogenetic variation in density-dependent growth of brown trout through habitat competition. Freshwater Biology, 2011, 56, 530-540.	2.4	31
11	Assisting seed dispersers to restore oldfields: An individualâ€based model of the interactions among badgers, foxes and Iberian pear trees. Journal of Applied Ecology, 2018, 55, 600-611.	4.0	31
12	Improving Execution Speed of Models Implemented in NetLogo. Jasss, 2017, 20, .	1.8	31
13	Modelling brown trout spatial requirements through physical habitat simulations. River Research and Applications, 2010, 26, 1090-1102.	1.7	25
14	Mechanistic simulations predict that thermal and hydrological effects of climate change on Mediterranean trout cannot be offset by adaptive behaviour, evolution, and increased food production. Science of the Total Environment, 2019, 693, 133648.	8.0	25
15	Climate-driven biophysical changes in feeding and breeding environments explain the decline of southernmost European Atlantic salmon populations. Canadian Journal of Fisheries and Aquatic Sciences, 2019, 76, 1581-1595.	1.4	23
16	Ecoâ€evolutionary responses to recreational fishing under different harvest regulations. Ecology and Evolution, 2018, 8, 9600-9613.	1.9	22
17	A new biological indicator to assess the ecological status of Mediterranean trout type streams. Ecological Indicators, 2012, 20, 295-303.	6.3	21
18	Potential distributions of invasive vertebrates in the Iberian Peninsula under projected changes in climate extreme events. Diversity and Distributions, 2021, 27, 2262-2276.	4.1	21

DANIEL AYLLON

#	Article	IF	CITATIONS
19	Thermal Carrying Capacity for a Thermally-Sensitive Species at the Warmest Edge of Its Range. PLoS ONE, 2013, 8, e81354.	2.5	20
20	Keeping modelling notebooks with TRACE: Good for you and good for environmental research and management support. Environmental Modelling and Software, 2021, 136, 104932.	4.5	19
21	Unravelling the effects of water temperature and density dependence on the spatial variation of brown trout (Salmo trutta) body size. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 821-832.	1.4	18
22	Intercohort density dependence drives brown trout habitat selection. Acta Oecologica, 2013, 46, 1-9.	1.1	18
23	Spatioâ€ŧemporal habitat selection shifts in brown trout populations under contrasting natural flow regimes. Ecohydrology, 2014, 7, 569-579.	2.4	18
24	Optimal harvest regulations under conflicting tradeoffs between conservation and recreational fishery objectives. Fisheries Research, 2019, 216, 47-58.	1.7	17
25	Dams cause genetic homogenization in populations of fish that present homing behavior: Evidence from a demogenetic individual-based model. Ecological Modelling, 2018, 384, 209-220.	2.5	16
26	Intertwined effects of defaunation, increased tree mortality and density compensation on seed dispersal. Ecography, 2020, 43, 1352-1363.	4.5	16
27	Contingent trade-off decisions with feedbacks in cyclical environments: testing alternative theories. Behavioral Ecology, 2020, 31, 1192-1206.	2.2	15
28	Importance of the Daily Light Cycle in Population–Habitat Relations: A Simulation Study. Transactions of the American Fisheries Society, 2021, 150, 130-143.	1.4	13
29	<scp>InSTREAM</scp> 7: Instream flow assessment and management model for stream trout. River Research and Applications, 2021, 37, 1294-1302.	1.7	13
30	Discriminating between possible foraging decisions using pattern-oriented modelling: The case of pink-footed geese in Mid-Norway during their spring migration. Ecological Modelling, 2016, 320, 299-315.	2.5	12
31	Cross-disciplinary links in environmental systems science: Current state and claimed needs identified in a meta-review of process models. Science of the Total Environment, 2018, 622-623, 954-973.	8.0	12
32	Climate change will render sizeâ€selective harvest of coldâ€water fish species unsustainable in Mediterranean freshwaters. Journal of Applied Ecology, 2021, 58, 562-575.	4.0	12
33	Stable isotopes suggest the location of marine feeding grounds of South European Atlantic salmon in Greenland. ICES Journal of Marine Science, 2020, 77, 593-603.	2.5	10
34	Territorial and foraging behaviour of juvenile Mediterranean trout under changing conditions of food and competitors. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 990-998.	1.4	9
35	Modelling movements of Saimaa ringed seals using an individual-based approach. Ecological Modelling, 2018, 368, 321-335.	2.5	9
36	Are the EU biosecurity legislative frameworks sufficiently effective to prevent biological invasions in the Natura 2000 network? – A case study in Mediterranean Europe. Environmental Science and Policy, 2021, 120, 21-28.	4.9	8

DANIEL AYLLON

#	Article	IF	CITATIONS
37	The overlooked benefits of synzoochory: rodents rescue seeds from aborted fruits. Ecosphere, 2020, 11, e03298.	2.2	6
38	Tackling biological invasions in Natura 2000 network in the light of the new EU Biodiversity Strategy for 2030. Management of Biological Invasions, 2021, 12, 776-791.	1.2	6
39	Escalating the conflict? Intersex genetic correlations influence adaptation to environmental change in facultatively migratory populations. Evolutionary Applications, 2022, 15, 773-789.	3.1	6
40	FloMan-MF: Floodplain Management for the Moor Frog â^' a simulation model for amphibian conservation in dynamic wetlands. Ecological Modelling, 2017, 348, 110-124.	2.5	2
41	Determinants of largeâ€scale spatial distribution and seasonal microhabitat selection patterns of the endangered freshwater blenny Salaria fluviatilis in the Ebro River basin, Spain. Aquatic Conservation: Marine and Freshwater Ecosystems, 0, , .	2.0	2
42	Rodents Rescue Seeds from Aborted Fruits. Bulletin of the Ecological Society of America, 2021, 102, e01823.	0.2	0
43	Seasonal patterns of microhabitat selection in the Southern Iberian spined-loach Cobitis paludica. Aquatic Sciences, 2022, 84, 1.	1.5	0
44	Differential vulnerability to biological invasions: not all protected areas (and not all invaders) are the same. Biodiversity and Conservation, 0, , 1.	2.6	0