
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12159404/publications.pdf Version: 2024-02-01

FEDDINAND HUCHO

#	Article	IF	CITATIONS
1	The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M II of the receptor subunits. FEBS Letters, 1986, 205, 137-142.	1.3	312
2	α-Keto acid dehydrogenase complexes. Archives of Biochemistry and Biophysics, 1972, 148, 327-342.	1.4	301
3	α-Keto acid dehydrogenase complexes. Archives of Biochemistry and Biophysics, 1972, 151, 328-340.	1.4	255
4	The Emerging Three-Dimensional Structure of a Receptor. The Nicotinic Acetylcholine Receptor. FEBS Journal, 1996, 239, 539-557.	0.2	187
5	The nicotinic acetylcholine receptor and its ion channel. FEBS Journal, 1986, 158, 211-225.	0.2	160
6	Membranes Rich in Acetylcholine Receptor: Characterization and Reconstitution to Excitable Membranes from Exogenous Lipids. FEBS Journal, 1978, 85, 55-63.	0.2	130
7	Molecular weight and quaternary structure of the cholinergic receptor protein extracted by detergents from Electrophorus electricus electric tissue. FEBS Letters, 1973, 38, 11-15.	1.3	91
8	Downstream targets of urokinase-type plasminogen-activator-mediated signal transduction. FEBS Journal, 1998, 253, 421-429.	0.2	91
9	Biochemical characterization of the vanilloid receptor 1 expressed in a dorsal root ganglia derived cell line. FEBS Journal, 2001, 268, 5489-5496.	0.2	89
10	Acetylcholine receptor: -SH group reactivity as indicator of conformational changes and functional states. FEBS Letters, 1977, 75, 65-69.	1.3	85
11	The ion channel of the nicotinic acetylcholine receptor. Trends in Neurosciences, 1987, 10, 318-321.	4.2	83
12	The Acetylcholine Receptor as Part of a Protein Complex in Receptor-Enriched Membrane Fragments from Torpedo californica Electric Tissue. FEBS Journal, 1978, 83, 335-340.	0.2	76
13	Ligand-Gated Ion Channels. Angewandte Chemie - International Edition, 2001, 40, 3100-3116.	7.2	76
14	Investigation of the Symmetry of Oligomeric Enzymes with Bifunctional Reagents. FEBS Journal, 1975, 59, 79-87.	0.2	73
15	Secondary structure and temperature behavior of the acetylcholine receptor by Fourier transform infrared spectroscopy. Biochemistry, 1993, 32, 3162-3168.	1.2	65
16	Acetylcholine receptor enriched membranes: Acetylcholine binding and excitability after reduction in vitro. FEBS Letters, 1977, 81, 39-42.	1.3	58
17	The Handedness of the Subunit Arrangement of the Nicotinic Acetylcholine Receptor from Torpedo californica. FEBS Journal, 1995, 234, 427-430.	0.2	50
18	Covalent labeling of the acetylcholine receptor from Torpedo electric tissue with the channel blocker [3H]triphenylmethylphosphonium by ultraviolet irradiation. Biochemistry, 1983, 22, 421-425.	1.2	46

#	Article	IF	CITATIONS
19	Toxins as Tools in Neurochemistry. Angewandte Chemie International Edition in English, 1995, 34, 39-50.	4.4	46
20	Interactions of the Nicotinic Acetylcholine Receptor Transmembrane Segments with the Lipid Bilayer in Native Receptor-Rich Membranes. Biochemistry, 1997, 36, 839-847.	1.2	45
21	The selectivity filter of a ligand-gated ion channel. FEBS Letters, 1989, 257, 17-23.	1.3	42
22	Investigation of ligand binding sites of the acetylcholine receptor using photoactivatable derivatives of neurotoxin II from Naja naja oxiana. Biochemistry, 1992, 31, 8239-8244.	1.2	40
23	β-structure in the membrane-spanning part of the nicotinic acetylcholine receptor (or how helical are) Tj ETQq1	1 0,784314 3.7	4 rgβT /Overl
24	Characterization of rat transient receptor potential vanilloid 1 receptors lacking the N-glycosylation site N604. NeuroReport, 2005, 16, 997-1001.	0.6	39
25	The Pyruvate Dehydrogenase Multienzyme Complex. Angewandte Chemie International Edition in English, 1975, 14, 591-601.	4.4	37
26	Photoaffinity derivatives of α-Bungarotoxin and α-Naja naja siamensis toxin. FEBS Letters, 1979, 103, 27-32.	1.3	35
27	Regulation of the Mammalian Pyruvate Dehydrogenase Multienzyme Complex by Mg2+ and the Adenine Nucleotide Pool. FEBS Journal, 1974, 46, 499-505.	0.2	33
28	Physicochemical and immunological studies of the N-terminal domain Ã ⁻ Â;½of theTorpedoacetylcholine receptor α-subunit expressed in Ã ⁻ Â;½Escherichia coli. FEBS Journal, 1999, 259, 310-319.	0.2	33
29	Dual expression of mouse and rat VRL-1 in the dorsal root ganglion derived cell line F-11 and biochemical analysis of VRL-1 after heterologous expression. FEBS Journal, 2003, 270, 4264-4271.	0.2	33
30	Investigation of the quaternary structure of beef liver glutamate dehydrogenase with bifunctional reagents. Biochemical and Biophysical Research Communications, 1974, 57, 1080-1088.	1.0	32
31	Ligand Binding to Nicotinic Acetylcholine Receptor Investigated by Surface Plasmon Resonance. Analytical Chemistry, 1999, 71, 3157-3165.	3.2	30
32	Structure-activity relationship and site of binding of polyamine derivatives at the nicotinic acetylcholine receptor. FEBS Journal, 2000, 267, 110-120.	0.2	29
33	Towards structure determination of neurotoxin II bound to nicotinic acetylcholine receptor: a solid-state NMR approach. FEBS Letters, 2004, 564, 319-324.	1.3	29
34	Phosphorylation sites of the nicotinic acetylcholine receptor. A novel site detected in position .delta.S362. Biochemistry, 1991, 30, 3583-3588.	1.2	25
35	Loop 3 of Short Neurotoxin II is an Additional Interaction Site with Membrane-bound Nicotinic Acetylcholine Receptor as Detected by Solid-state NMR Spectroscopy. Journal of Molecular Biology, 2009, 390, 662-671.	2.0	25
36	Location of the Polyamine Binding Site in the Vestibule of the Nicotinic Acetylcholine Receptor Ion Channel. Journal of Biological Chemistry, 2001, 276, 6151-6160.	1.6	23

#	Article	IF	CITATIONS
37	Identification of phosphopeptides by mass spectrometry. FEBS Letters, 1990, 273, 31-35.	1.3	22
38	Fourier transform infrared (FTIR) spectroscopic investigation of the nicotinic acetylcholine receptor (nAChR) Investigation of agonist binding and receptor conformational changes by flash-induced release of â€~caged' carbamoylcholine. FEBS Letters, 1992, 309, 213-217.	1.3	22
39	Rapid preparation of the nicotinic acetylcholine receptor for crystallization in detergent solution. FEBS Letters, 1988, 241, 29-32.	1.3	21
40	Photoaffinity labeling of acetylcholine receptor in millisecond time scale. FEBS Letters, 1984, 166, 146-150.	1.3	20
41	Palytoxin-induced permeability changes in excitable membranes. Biochimica Et Biophysica Acta - Biomembranes, 1985, 818, 55-60.	1.4	20
42	Covalent labeling of functional states of the acetylcholine receptor. FEBS Journal, 2008, 147, 483-487.	0.2	20
43	Rapid laser flash photoaffinity labeling of binding sites for a noncompetitive inhibitor of the acetylcholine receptor. Biochemistry, 1984, 23, 2725-2730.	1.2	19
44	Investigation of theNaja naja siamensistoxin binding site of the cholinergic receptor protein fromTorpedoelectric tissue. FEBS Letters, 1974, 47, 204-208.	1.3	18
45	How do acetylcholine receptor ligands reach their binding sites?. FEBS Journal, 1999, 265, 902-910.	0.2	18
46	Binding Properties of Agonists and Antagonists to Distinct Allosteric States of the Nicotinic Acetylcholine Receptor Are Incompatible with a Concerted Model. Journal of Biological Chemistry, 2000, 275, 30196-30201.	1.6	18
47	Biochemical investigations of ionic channels in excitable membranes. Molecular and Cellular Biochemistry, 1977, 18, 151-172.	1.4	14
48	Structureâ [~] Activity Relationships of Methoctramine-Related Polyamines as Muscular Nicotinic Receptor Noncompetitive Antagonists. 2.1Role of Polymethylene Chain Lengths Separating Amine Functions and of Substituents on the Terminal Nitrogen Atoms. Journal of Medicinal Chemistry, 2002, 45, 1860-1878.	2.9	14
49	ATP-binding proteins in acetylcholine receptor-enriched membranes. FEBS Letters, 1979, 108, 37-39.	1.3	13
50	All potential glycosylation sites of the nicotinic acetylcholine receptor delta subunit from Torpedo californica are utilized. FEBS Journal, 1994, 220, 1005-1011.	0.2	13
51	Functional and structural analysis of acetylcholine receptor-rich membranes after negative staining. FEBS Letters, 1984, 173, 217-221.	1.3	12
52	Intracellular domains of the δ-subunits of Torpedo and rat acetylcholine receptors—expression, purification, and characterization. Protein Expression and Purification, 2004, 38, 237-247.	0.6	12
53	Acetylcholine receptor binding properties and ion permeability response after covalent attachment of the local anaesthetic quinacrine. Biochimica Et Biophysica Acta - General Subjects, 1979, 587, 42-48.	1.1	11
54	Nuclear localization of protein kinase Cα and its association with nuclear components in Neuro-2a neuroblastoma cells. FEBS Letters, 1997, 406, 61-65.	1.3	11

#	Article	IF	CITATIONS
55	Toxine als Werkzeuge in der Neurochemie. Angewandte Chemie, 1995, 107, 23-36.	1.6	10
56	Reconstitution of active acetylcholine receptor by hybridisation of binding site-blocked with ion channel-blocked acetylcholine receptor protein. Biochimica Et Biophysica Acta - Biomembranes, 1980, 597, 626-630.	1.4	9
57	Acetylcholine receptor-rich membranes contain an endogenous protease regulated by peripheral membrane protein. FEBS Letters, 1982, 147, 168-170.	1.3	9
58	High- and low-affinity binding of [3H]acetylcholine at nicotinic cholinergic receptors in rat brain. Neuroscience Letters, 1985, 59, 271-276.	1.0	9
59	Influence of phenylpyruvate on the interconversion of pyruvate dehydrogenase complex from mammalian brain and kidney. FEBS Letters, 1974, 43, 116-119.	1.3	8
60	Binding of polyamine-containing toxins in the vestibule of the nicotinic acetylcholine receptor ion channel. Il Farmaco, 2001, 56, 133-135.	0.9	5
61	A stopped-flow apparatus for photoaffinity labeling studies in the milliseconds time range. Application in investigations of the nicotinic acetylcholine receptor. Journal of Neuroscience Methods, 1986, 16, 29-38.	1.3	4
62	Symmetry and Dimensions of Membrane-Bound Nicotinic Acetylcholine Receptors from <i>Torpedo californica</i> Electric Tissue: Rapid Rearrangement to Two-Dimensional Ordered Lattices. Membrane Biochemistry, 1989, 8, 81-93.	0.6	4
63	The electron microscopy of the nicotinic acetylcholine receptor. Electron Microscopy Reviews, 1989, 2, 349-366.	1.3	4
64	Reverse-Phase Chromatography Isolation and MALDI Mass Spectrometry of the Acetylcholine Receptor Subunits. Protein Expression and Purification, 1998, 12, 226-232.	0.6	4
65	Chapter 4 The nicotinic acetylcholine receptor. New Comprehensive Biochemistry, 1993, 24, 113-135.	0.1	2
66	The selectivity filter of a ligand-gated ion channel. The Protein Journal, 1989, 8, 327-329.	1.1	0
67	The role of subunit interfaces for the nicotinic acetylcholine receptor's allosterism. Journal of Physiology (Paris), 1998, 92, 85-88.	2.1	0
68	Identification of Phosphorylation Sites in the Nicotinic Acetylcholine Receptor by Edman Degradation and Mass Spectroscopy LC/MS and LC/MS/MS. , 1991, , 79-84.		0
69	The emerging three-dimensional structure of a receptor. , 1996, , 175-193.		0