
Zhou Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12159266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intestinal SIRT1 Deficiency Protects Mice from Ethanol-Induced Liver Injury by Mitigating Ferroptosis. American Journal of Pathology, 2020, 190, 82-92.	3.8	82
2	Interleukinâ€⊋2 Ameliorates Neutrophilâ€Driven Nonalcoholic Steatohepatitis Through Multiple Targets. Hepatology, 2020, 72, 412-429.	7.3	100
3	Adiposeâ€Specific Lipinâ€1 Overexpression Renders Hepatic Ferroptosis and Exacerbates Alcoholic Steatohepatitis in Mice. Hepatology Communications, 2019, 3, 656-669.	4.3	37
4	Hepatocytes and neutrophils cooperatively suppress bacterial infection by differentially regulating lipocalinâ€2 and neutrophil extracellular traps. Hepatology, 2018, 68, 1604-1620.	7.3	47
5	Neutrophil–Hepatic Stellate Cell Interactions Promote Fibrosis inÂExperimental Steatohepatitis. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 399-413.	4.5	95
6	Endocrine Adiponectinâ€FGF15/19 Axis in Ethanol-Induced Inflammation and Alcoholic Liver Injury. Gene Expression, 2018, 18, 103-113.	1.2	12
7	Hepatic Knockdown of Splicing Regulator Slu7 Ameliorates Inflammation and Attenuates Liver Injury in Ethanol-Fed Mice. American Journal of Pathology, 2018, 188, 1807-1819.	3.8	9
8	Inflammation is independent of steatosis in a murine model of steatohepatitis. Hepatology, 2017, 66, 108-123.	7.3	56
9	MicroRNA-223 ameliorates alcoholic liver injury by inhibiting the IL-6–p47 ^{phox} –oxidative stress pathway in neutrophils. Gut, 2017, 66, 705-715.	12.1	173
10	Targeting inflammation for the treatment of alcoholic liver disease. , 2017, 180, 77-89.		60
11	Aging aggravates alcoholic liver injury and fibrosis in mice by downregulating sirtuin 1 expression. Journal of Hepatology, 2017, 66, 601-609.	3.7	123
12	PARP inhibition protects against alcoholic and non-alcoholic steatohepatitis. Journal of Hepatology, 2017, 66, 589-600.	3.7	116
13	Animal Models of Alcoholic Liver Disease: Pathogenesis and Clinical Relevance. Gene Expression, 2017, 17, 173-186.	1.2	86
14	Mitochondrial DNA–enriched microparticles promote acute-on-chronic alcoholic neutrophilia and hepatotoxicity. JCI Insight, 2017, 2, .	5.0	76
15	Hepatocytes: a key cell type for innate immunity. Cellular and Molecular Immunology, 2016, 13, 301-315.	10.5	299
16	Short―or longâ€ŧerm highâ€fat diet feeding plus acute ethanol binge synergistically induce acute liver injury in mice: An important role for CXCL1. Hepatology, 2015, 62, 1070-1085.	7.3	152
17	Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration. Biomaterials, 2015, 73, 51-59.	11.4	25
18	Perivascular Adipose Tissue in Vascular Function and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1621-1630.	2.4	246

Zнои Zнои

#	Article	IF	CITATIONS
19	Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds. Biomaterials, 2014, 35, 8960-8969.	11.4	111
20	MCPIP1 negatively regulates toll-like receptor 4 signaling and protects mice from LPS-induced septic shock. Cellular Signalling, 2013, 25, 1228-1234.	3.6	39
21	Targeted disruption of MCPIP1/Zc3h12a results in fatal inflammatory disease. Immunology and Cell Biology, 2013, 91, 368-376.	2.3	52
22	MCPIP1 Deficiency in Mice Results in Severe Anemia Related to Autoimmune Mechanisms. PLoS ONE, 2013, 8, e82542.	2.5	17
23	Buchwald–Hartwig Coupling/Michael Addition Reactions: Oneâ€Pot Synthesis of 1,2â€Disubstituted 4â€Quinolones from Chalcones and Primary Amines. European Journal of Organic Chemistry, 2012, 2012, 3001-3008.	2.4	33