Shuji Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12158496/publications.pdf

Version: 2024-02-01

623734 552781 36 847 14 26 citations g-index h-index papers 36 36 36 658 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	DUV-LED packaging using high density TSV in silicon cavity and laser-glass-frit-bonded UV transmitting glass cap. Sensors and Actuators A: Physical, 2022, 344, 113700.	4.1	2
2	Development of silicon wafer packaging technology for deep UV LED. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2021, 214, 62-68.	0.4	2
3	Laterally vibrating MEMS resonant vacuum sensor based on cavity-SOI process for evaluation of wide range of sealed cavity pressure. Microsystem Technologies, 2019, 25, 487-497.	2.0	21
4	Metalâ€bondingâ€based hermetic waferâ€level MEMS packaging technology using inâ€plane feedthrough: Hermeticity and high frequency characteristics of thick gold film feedthrough. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2019, 206, 44-53.	0.4	2
5	Bonding-Based Wafer-Level Vacuum Packaging Using Atomic Hydrogen Pre-Treated Cu Bonding Frames. Micromachines, 2018, 9, 181.	2.9	4
6	Wafer-level vacuum sealing using AgAg thermocompression bonding after fly-cut planarization. Sensors and Actuators A: Physical, 2017, 261, 210-218.	4.1	8
7	Wafer-level hermetic thermo-compression bonding using electroplated gold sealing frame planarized by fly-cutting. Journal of Micromechanics and Microengineering, 2017, 27, 015029.	2.6	41
8	Wafer-level vacuum packaging for hetero-integration by thermo-compression bonding using planarized-electroplated gold bumps. , 2016 , , .		2
9	Comprehensive study on wafer-level vacuum packaging using anodically-bondable LTCC wafer and thin film getter. , 2015, , .		5
10	Wafer-level hermetic MEMS packaging by anodic bonding and its reliability issues. Microelectronics Reliability, 2014, 54, 875-881.	1.7	64
11	Fuel cells and their components based on microsystem technology. Wiley Interdisciplinary Reviews: Energy and Environment, 2013, 2, 350-362.	4.1	4
12	Versatile wafer-level hermetic packaging technology using anodically-bondable LTCC wafer with compliant porous gold bumps spontaneously formed in wet-etched cavities. , 2012, , .		9
13	Wafer-level hermetic packaging technology for MEMS using anodically-bondable LTCC wafer. , 2011, , .		24
14	Current Status of Miniature Gas Turbine Generators: Summary of Achievements and Problems(<special issue="">The 1st Symposium on Micro-Nano Engineering). Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2010, 76, 1896-1898.</special>	0.2	0
15	Axisymmetric polydimethysiloxane microchannels for <i>in vitro</i> hemodynamic studies. Biofabrication, 2009, 1, 035005.	7.1	38
16	In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomedical Microdevices, 2008, 10, 153-167.	2.8	168
17	Test of B/Ti multilayer reactive igniters for a micro solid rocket array thruster. Sensors and Actuators A: Physical, 2008, 144, 361-366.	4.1	64
18	Hydroinertia Gas Bearing System to Achieve 470mâ^•s Tip Speed of 10mm-Diameter Impellers. Journal of Tribology, 2007, 129, 655-659.	1.9	11

#	Article	IF	Citations
19	Fabrication and high-speed characterization of SU-8 shrouded two-dimensional microimpellers. Journal of Micromechanics and Microengineering, 2007, 17, S230-S236.	2.6	20
20	Experimental verification of the feasibility of a 100 W class micro-scale gas turbine at an impeller diameter of 10 mm. Journal of Micromechanics and Microengineering, 2006, 16, S254-S261.	2.6	75
21	Fabrication of novel MEMS-based polymer electrolyte fuel cell architectures with catalytic electrodes supported on porous SiO2. Journal of Micromechanics and Microengineering, 2006, 16, 505-511.	2.6	44
22	A micro fuel reformer integrated with a combustor and a microchannel evaporator. Journal of Micromechanics and Microengineering, 2006, 16, S191-S197.	2.6	46
23	MEMS-BASED FUEL CELL FOR PORTABLE MEDICAL APPLICATIONS. , 2006, , .		0
24	Development of high-speed micro-gas bearings for three-dimensional micro-turbo machines. Journal of Micromechanics and Microengineering, 2005, 15, S222-S227.	2.6	37
25	Turbo test rig with hydroinertia air bearings for a palmtop gas turbine. Journal of Micromechanics and Microengineering, 2004, 14, 1449-1454.	2.6	27
26	Vacuum test of a micro-solid propellant rocket array thruster. IEICE Electronics Express, 2004, 1, 222-227.	0.8	9
27	Design of High Power Electrostatic Motor and Generator Using Electrets. IEEJ Transactions on Sensors and Micromachines, 2003, 123, 331-339.	0.1	4
28	Power MEMS. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2003, 54, 908-914.	0.2	1
29	MEMS-Based Solid Propellant Rocket Array Thruster with Electrical Feedthroughs Transactions of the Japan Society for Aeronautical and Space Sciences, 2003, 46, 47-51.	0.7	57
30	Hydrogen Supply Using Borohydride and Prototyping of a Miniature Fuel Cell by Sand Blasting. IEEJ Transactions on Sensors and Micromachines, 2003, 123, 340-345.	0.1	2
31	MEMS-Based Fuel Reformer with Suspended Membrane Structure. IEEJ Transactions on Sensors and Micromachines, 2003, 123, 346-350.	0.1	12
32	MEMS-Based Polymer Electrolyte Fuel Cell. Electrochemistry, 2002, 70, 924-927.	1.4	44
33	A5 Micromachining Technology and Power MEMS. The Proceedings of the Space Engineering Conference, 2002, 2002.10, 19-24.	0.1	0
34	Silicon Micro-Fuel Cells. The Proceedings of the Conference on Information Intelligence and Precision Equipment IIP, 2002, 2002, 153-156.	0.0	0
35	F-1322 Miniature Thermoelectric Generator Using Catalytic Combustion. The Proceedings of the JSME Annual Meeting, 2001, IV.01.1, 269-270.	0.0	0
36	Silicon Carbide Micromachining And Micromachined Gas Turbines. The Proceedings of the Conference on Information Intelligence and Precision Equipment IIP, 2000, 2000, 92-97.	0.0	0