Ye Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/12158483/ye-wang-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

17	711 citations	16	17
papers		h-index	g-index
17	788	8.9	3.83
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
17	An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 7153-7172	7.3	89
16	Drug-releasing implants: current progress, challenges and perspectives. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 6157-6182	7.3	88
15	Biomimetic Nanoporous Anodic Alumina Distributed Bragg Reflectors in the Form of Films and Microsized Particles for Sensing Applications. <i>ACS Applied Materials & Distributed Research</i> , 7, 19816-24	9.5	53
14	Rational Design of Ultra-Short Anodic Alumina Nanotubes by Short-Time Pulse Anodization. <i>Electrochimica Acta</i> , 2015 , 154, 379-386	6.7	52
13	Structurally engineered anodic alumina nanotubes as nano-carriers for delivery of anticancer therapeutics. <i>Biomaterials</i> , 2014 , 35, 5517-26	15.6	52
12	Realisation and advanced engineering of true optical rugate filters based on nanoporous anodic alumina by sinusoidal pulse anodisation. <i>Nanoscale</i> , 2016 , 8, 1360-73	7.7	42
11	Interferometric nanoporous anodic alumina photonic coatings for optical sensing. <i>Nanoscale</i> , 2015 , 7, 7770-9	7.7	41
10	Systematic in vitro nanotoxicity study on anodic alumina nanotubes with engineered aspect ratio: understanding nanotoxicity by a nanomaterial model. <i>Biomaterials</i> , 2015 , 46, 117-30	15.6	40
9	On The Generation of Interferometric Colors in High Purity and Technical Grade Aluminum: An Alternative Green Process for Metal Finishing Industry. <i>Electrochimica Acta</i> , 2015 , 174, 672-681	6.7	39
8	Insitu monitored engineering of inverted nanoporous anodic alumina funnels: on the precise generation of 3D optical nanostructures. <i>Nanoscale</i> , 2014 , 6, 9991-9	7.7	39
7	Facile synthesis of optical microcavities by a rationally designed anodization approach: tailoring photonic signals by nanopore structure. <i>ACS Applied Materials & Designation approach</i> , 7, 9879-88	9.5	34
6	Titanium wire implants with nanotube arrays: A study model for localized cancer treatment. <i>Biomaterials</i> , 2016 , 101, 176-88	15.6	33
5	Rational Design of Photonic Dust from Nanoporous Anodic Alumina Films: A Versatile Photonic Nanotool for Visual Sensing. <i>Scientific Reports</i> , 2015 , 5, 12893	4.9	27
4	From The Mine to Cancer Therapy: Natural and Biodegradable Theranostic Silicon Nanocarriers from Diatoms for Sustained Delivery of Chemotherapeutics. <i>Advanced Healthcare Materials</i> , 2016 , 5, 2667-2678	10.1	27
3	Naturally Derived Iron Oxide Nanowires from Bacteria for Magnetically Triggered Drug Release and Cancer Hyperthermia in 2D and 3D Culture Environments: Bacteria Biofilm to Potent Cancer Therapeutic. <i>Biomacromolecules</i> , 2016 , 17, 2726-36	6.9	26
2	Bioinert Anodic Alumina Nanotubes for Targeting of Endoplasmic Reticulum Stress and Autophagic Signaling: A Combinatorial Nanotube-Based Drug Delivery System for Enhancing Cancer Therapy. <i>ACS Applied Materials & Delivery System Syst</i>	9.5	23
1	In vivo toxicological assessment of electrochemically engineered anodic alumina nanotubes: a study of biodistribution, subcutaneous implantation and intravenous injection. <i>Journal of Materials Chemistry B.</i> 2017 , 5, 2511-2523	7.3	6