Ana I Ribeiro-Barros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12158047/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Longâ€ŧerm elevated air [<scp>CO</scp> ₂] strengthens photosynthetic functioning and mitigates the impact of supraâ€optimal temperatures in tropical <i>Coffea arabica</i> and <i>C.Âcanephora</i> species. Global Change Biology, 2016, 22, 415-431.	9.5	151
2	Protective Response Mechanisms to Heat Stress in Interaction with High [CO2] Conditions in Coffea spp Frontiers in Plant Science, 2016, 7, 947.	3.6	103
3	Selenium biofortification of rice grains and implications on macronutrients quality. Journal of Cereal Science, 2018, 81, 22-29.	3.7	64
4	Simultaneous Zinc and selenium biofortification in rice. Accumulation, localization and implications on the overall mineral content of the flour. Journal of Cereal Science, 2018, 82, 34-41.	3.7	60
5	Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?. Frontiers in Plant Science, 2018, 9, 287.	3.6	59
6	SELENIUM BIOFORTIFICATION OF RICE THROUGH FOLIAR APPLICATION WITH SELENITE AND SELENATE. Experimental Agriculture, 2019, 55, 528-542.	0.9	44
7	Stress cross-response of the antioxidative system promoted by superimposed drought and cold conditions in Coffea spp PLoS ONE, 2018, 13, e0198694.	2.5	43
8	Selection and Validation of Reference Genes for Accurate RT-qPCR Data Normalization in Coffea spp. under a Climate Changes Context of Interacting Elevated [CO2] and Temperature. Frontiers in Plant Science, 2017, 8, 307.	3.6	41
9	Intrinsic non-stomatal resilience to drought of the photosynthetic apparatus in <i>Coffea</i> spp. is strengthened by elevated air [CO2]. Tree Physiology, 2021, 41, 708-727.	3.1	40
10	GC-TOF-MS analysis reveals salt stress-responsive primary metabolites in Casuarina glauca tissues. Metabolomics, 2017, 13, 1.	3.0	36
11	Is salt stress tolerance in Casuarina glauca Sieb. ex Spreng. associated with its nitrogen-fixing root-nodule symbiosis? An analysis at the photosynthetic level. Plant Physiology and Biochemistry, 2015, 96, 97-109.	5.8	34
12	Lipid profile adjustments may contribute to warming acclimation and to heat impact mitigation by elevated [CO2] in Coffea spp. Environmental and Experimental Botany, 2019, 167, 103856.	4.2	32
13	Resilient and Sensitive Key Points of the Photosynthetic Machinery of Coffea spp. to the Single and Superimposed Exposure to Severe Drought and Heat Stresses. Frontiers in Plant Science, 2020, 11, 1049.	3.6	31
14	Drought response of cowpea (Vigna unguiculata (L.) Walp.) landraces at leaf physiological and metabolite profile levels. Environmental and Experimental Botany, 2020, 175, 104060.	4.2	24
15	Antioxidative ability and membrane integrity in salt-induced responses of Casuarina glauca Sieber ex Spreng. in symbiosis with N2-fixing Frankia Thr or supplemented with mineral nitrogen. Journal of Plant Physiology, 2016, 196-197, 60-69.	3.5	20
16	Salt-stress secondary metabolite signatures involved in the ability of Casuarina glauca to mitigate oxidative stress. Environmental and Experimental Botany, 2019, 166, 103808.	4.2	20
17	Understanding the Impact of Drought in Coffea Genotypes: Transcriptomic Analysis Supports a Common High Resilience to Moderate Water Deficit but a Genotype Dependent Sensitivity to Severe Water Deficit. Agronomy, 2021, 11, 2255.	3.0	18
18	A Transcriptomic Approach to Understanding the Combined Impacts of Supra-Optimal Temperatures and CO2 Revealed Different Responses in the Polyploid Coffea arabica and Its Diploid Progenitor C. canephora. International Journal of Molecular Sciences, 2021, 22, 3125.	4.1	16

ANA I RIBEIRO-BARROS

#	Article	IF	CITATIONS
19	Primary Metabolite Profile Changes in Coffea spp. Promoted by Single and Combined Exposure to Drought and Elevated CO2 Concentration. Metabolites, 2021, 11, 427.	2.9	15
20	Selenium Agronomic Biofortification in Rice: Improving Crop Quality Against Malnutrition. , 2020, , 179-203.		15
21	Root Trait Variability in Coffea canephora Genotypes and Its Relation to Plant Height and Crop Yield. Agronomy, 2020, 10, 1394.	3.0	14
22	Validation of candidate reference genes for qRT-PCR studies in symbiotic and non-symbiotic Casuarina glauca Sieb. ex Spreng. under salinity conditions. Symbiosis, 2015, 66, 21-35.	2.3	13
23	An integrated approach to understand the mechanisms underlying salt stress tolerance in Casuarina glauca and its relation with nitrogen-fixing Frankia Thr. Symbiosis, 2016, 70, 111-116.	2.3	13
24	Quantification and structural characterization of raffinose family oligosaccharides in Casuarina glauca plant tissues by porous graphitic carbon electrospray quadrupole ion trap mass spectrometry. International Journal of Mass Spectrometry, 2017, 413, 127-134.	1.5	13
25	Diversification of African Tree Legumes in Miombo–Mopane Woodlands. Plants, 2019, 8, 182.	3.5	13
26	Comparative Proteomic Analysis of Nodulated and Non-Nodulated Casuarina glauca Sieb. ex Spreng. Grown under Salinity Conditions Using Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS). International Journal of Molecular Sciences, 2020, 21, 78.	4.1	13
27	Vegetation structure and effects of human use of the dambos ecosystem in northern Mozambique. Global Ecology and Conservation, 2019, 20, e00704.	2.1	12
28	Actinorhizal trees and shrubs from Africa: distribution, conservation and uses. Antonie Van Leeuwenhoek, 2019, 112, 31-46.	1.7	12
29	Transcriptomic Leaf Profiling Reveals Differential Responses of the Two Most Traded Coffee Species to Elevated [CO2]. International Journal of Molecular Sciences, 2020, 21, 9211.	4.1	11
30	Genetic Diversity among Cowpea (Vigna unguiculata (L.) Walp.) Landraces Suggests Central Mozambique as an Important Hotspot of Variation. Agronomy, 2020, 10, 1893.	3.0	11
31	The genetic legacy of fragmentation and overexploitation in the threatened medicinal African pepper-bark tree, Warburgia salutaris. Scientific Reports, 2020, 10, 19725.	3.3	10
32	Rice Biofortification With Zinc and Selenium: A Transcriptomic Approach to Understand Mineral Accumulation in Flag Leaves. Frontiers in Genetics, 2020, 11, 543.	2.3	10
33	Next-Generation Proteomics Reveals a Greater Antioxidative Response to Drought in Coffea arabica Than in Coffea canephora. Agronomy, 2022, 12, 148.	3.0	10
34	Coffee Responses to Drought, Warming and High [CO2] in a Context of Future Climate Change Scenarios. Climate Change Management, 2018, , 465-477.	0.8	9
35	Mitigation of the Negative Impact of Warming on the Coffee Crop: The Role of Increased Air [CO2] and Management Strategies. , 0, , .		9
36	Diversity of Cowpea [Vigna unguiculataÂ(L) Walp] Landraces in Mozambique: New Opportunities for Crop Improvement and Future Breeding Programs. Agronomy, 2021, 11, 991.	3.0	9

#	Article	IF	CITATIONS
37	Cloning, overexpression and functional characterization of a class III chitinase from Casuarina glauca nodules. Symbiosis, 2016, 70, 139-148.	2.3	6
38	Mechanisms of salt stress tolerance in <i>Casuarina</i> : a review of recent research. Journal of Forest Research, 0, , 1-4.	1.4	4
39	Will Casuarina glauca Stress Resilience Be Maintained in the Face of Climate Change?. Metabolites, 2021, 11, 593.	2.9	3
40	Salt Stress Tolerance in Casuarina glauca and Its Relation with Nitrogen-Fixing Frankia Bacteria. , 2016, , 143-151.		2