
EliÅ;ka RejmÃ;nkovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1215721/publications.pdf Version: 2024-02-01

FLIÅ:KA PEIMÄ:NKOVÄ:

#	Article	IF	CITATIONS
1	Wetland plant decomposition under different nutrient conditions: what is more important, litter quality or site quality?. Biogeochemistry, 2006, 80, 245-262.	1.7	132
2	Nutrient resorption in wetland macrophytes: comparison across several regions of different nutrient status. New Phytologist, 2005, 167, 471-482.	3.5	104
3	MOSQUITO HABITATS, LAND USE, AND MALARIA RISK IN BELIZE FROM SATELLITE IMAGERY. , 2005, 15, 1223-1232.		100
4	Wetland macrophyte decomposition under different nutrient conditions: Relationships between decomposition rate, enzyme activities and microbial biomass. Soil Biology and Biochemistry, 2007, 39, 526-538.	4.2	94
5	A function of cyanobacterial mats in phosphorus-limited tropical wetlands. Hydrobiologia, 2000, 431, 135-153.	1.0	90
6	Impacts of land use on nutrient distribution and vegetation composition of freshwater wetlands in northern Belize. Wetlands, 2005, 25, 89-100.	0.7	84
7	The role of macrophytes in wetland ecosystems. Journal of Ecology and Environment, 2011, 34, 333-345.	1.6	71
8	Polyphasic evaluation of Limnoraphis robusta, a water-bloom forming cyanobacterium from Lake AtitlA¡n, Guatemala, with a description of Limnoraphis gen. nov Fottea, 2013, 13, 39-52.	0.4	70
9	Title is missing!. Plant and Soil, 2001, 236, 33-53.	1.8	65
10	Herbaceous Wetlands of the Yucatan Peninsula: Communities at Extreme Ends of Environmental Gradients. International Review of Hydrobiology, 1996, 81, 223-252.	0.6	59
11	Cyanobacteria - a neglected component of biodiversity: patterns of species diversity in inland marshes of northern Belize (Central America). Diversity and Distributions, 2004, 10, 189-199.	1.9	58
12	Cyanobacterial blooms in Lake Atitlan, Guatemala. Limnologica, 2011, 41, 296-302.	0.7	50
13	Volatile Substances from Larval Habitats Mediate Species-Specific Oviposition in Anopheles Mosquitoes. Journal of Medical Entomology, 2005, 42, 95-103.	0.9	46
14	Resistance and resilience of subalpine wetlands with respect to prolonged drought. Folia Geobotanica, 1999, 34, 175-188.	0.4	42
15	Anopheles albimanus (Diptera: Culicidae) and Cyanobacteria: An Example of Larval Habitat Selection. Environmental Entomology, 1996, 25, 1058-1067.	0.7	40
16	Wetland ecosystem changes after three years of phosphorus addition. Wetlands, 2008, 28, 914-927.	0.7	36
17	Response of cyanobacterial mats to nutrient and salinity changes. Aquatic Botany, 2005, 83, 87-107.	0.8	34
18	The effect of long-term submergence on functional properties of Eleocharis cellulosa Torr Aquatic Botany, 2006, 84, 251-258.	0.8	34

EliÅika RejmÃinkovÃi

#	Article	IF	CITATIONS
19	Methane in sulfate-rich and sulfate-poor wetland sediments. Biogeochemistry, 1996, 34, 57-70.	1.7	33
20	Emergent macrophytes in phosphorus limited marshes: do phosphorus usage strategies change after nutrient addition?. Plant and Soil, 2008, 313, 141-153.	1.8	30
21	Freshwater Wetland Plant Communities of Northern Belize: Implications for Paleoecological Studies of Maya Wetland Agriculture. Biotropica, 1995, 27, 28.	0.8	29
22	Spectral reflectance characteristics of California subalpine marsh plant communities. Wetlands, 1998, 18, 307-319.	0.7	28
23	Response of root and sediment phosphatase activity to increased nutrients and salinity. Biogeochemistry, 2008, 90, 159-169.	1.7	27
24	Spatial and temporal changes in phosphorus partitioning within a freshwater cyanobacterial mat community. Biogeochemistry, 2010, 101, 323-333.	1.7	26
25	Volatile Substances from Larval Habitats Mediate Species-Specific Oviposition in <i>Anopheles</i> Mosquitoes. Journal of Medical Entomology, 2005, 42, 95-103.	0.9	25
26	Nutrient enrichment in tropical wetlands: shifts from autotrophic to heterotrophic nitrogen fixation. Biogeochemistry, 2010, 101, 295-310.	1.7	25
27	Heterotrophic nitrogen fixation in oligotrophic tropical marshes: changes after phosphorus addition. Hydrobiologia, 2009, 627, 55-65.	1.0	23
28	Â15N as an indicator of N2-fixation by cyanobacterial mats in tropical marshes. Biogeochemistry, 2004, 67, 353-368.	1.7	21
29	Regime shift in the littoral ecosystem of volcanic Lake Atitlán in Central America: combined role of stochastic event and invasive plant species. Freshwater Biology, 2018, 63, 1088-1106.	1.2	19
30	Patterns of activities of root phosphomonoesterase and phosphodiesterase in wetland plants as a function of macrophyte species and ambient phosphorus regime. New Phytologist, 2011, 190, 968-976.	3.5	18
31	Title is missing!. Aquatic Ecology, 2000, 34, 413-420.	0.7	17
32	Heterotrophic microbial activities and nutritional status of microbial communities in tropical marsh sediments of different salinities: the effects of phosphorus addition and plant species. Plant and Soil, 2010, 336, 49-63.	1.8	16
33	Heterotrophic N2-fixation contributes to nitrogen economy of a common wetland sedge, Schoenoplectus californicus. PLoS ONE, 2018, 13, e0195570.	1.1	15
34	Natural hybridization in tropical spikerushes of Eleocharis subgenus Limnochloa (Cyperaceae): Evidence from morphology and DNA markers. American Journal of Botany, 2010, 97, 1229-1240.	0.8	13
35	Biological activities as patchiness driving forces in wetlands of northern Belize. Oikos, 2009, 118, 1687-1694.	1.2	12
36	Dynamics of Typha domingensis spread in Eleocharis dominated oligotrophic tropical wetlands following nutrient enrichment. Evolutionary Ecology, 2010, 24, 1505-1519.	0.5	11

EliÅika RejmÃinkovÃi

#	Article	IF	CITATIONS
37	Nutrient dynamics and phytoplankton resource limitation in a deep tropical mountain lake. Inland Waters, 2015, 5, 371-386.	1.1	11
38	Freshwater community interactions and malaria. , 2006, , 90-104.		11
39	Taxonomic evaluation of cyanobacterial microflora from alkaline marshes of northern Belize. 3. Diversity of heterocytous genera. Nova Hedwigia, 2017, 105, 445-486.	0.2	10
40	Hydrologic alterations impact plant litter decay rate and ecosystem resilience in Mojave wetlands. Restoration Ecology, 2019, 27, 1094-1104.	1.4	10
41	Macrophyte root and rhizome decay: the impact of nutrient enrichment and the use of live versus dead tissue in decomposition studies. Biogeochemistry, 2015, 124, 45-59.	1.7	7
42	Employing CBPR to investigate function, utility, and longevity of household filters to improve potable water quality for indigenous peoples at Lake Atitlán, Guatemala: a pilot study with San Pedro de La Laguna. Energy, Ecology and Environment, 2017, 2, 95-113.	1.9	7
43	Wood chip soil amendments in restored wetlands affect plant growth by reducing compaction and increasing dissolved phenolics. Restoration Ecology, 2019, 27, 1128-1136.	1.4	7
44	Fatty acids in anopheline mosquito larvae and their habitats. Journal of Vector Ecology, 2012, 37, 382-395.	0.5	6
45	Phenolic content and growth of wetland macrophytes: Is the allocation to secondary compounds driven by nutrient availability?. Folia Geobotanica, 2016, 51, 239-250.	0.4	6
46	Effects of Nutrient Limitations and Watershed Inputs on Community Respiration in a Deep, Tropical Lake: Comparison of Pelagic and Littoral Habitats. Water Resources Research, 2018, 54, 5213-5224.	1.7	4
47	The Effect of P Enrichment on Exudate Quantity and Bioavailability - a Comparison of Two Macrophyte Species. Wetlands, 2016, 36, 789-798.	0.7	2
48	Childhood parasitic infections and gastrointestinal illness in indigenous communities at Lake Atitlán, Guatemala. PeerJ, 2021, 9, e12331.	0.9	0