Jonas Bartsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12157207/publications.pdf

Version: 2024-02-01

759233 888059 39 366 12 17 citations h-index g-index papers 39 39 39 326 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hydrophobic AlO <i></i> > Surfaces by Adsorption of a SAM on Large Areas for Application in Solar Cell Metallization Patterning. ACS Applied Materials & Therfaces, 2021, 13, 5803-5813.	8.0	14
2	Challenges in the Fabrication of a Glued III-V on Si Tandem Solar Cell Using a ZnO-Based TCA. , 2021, , .		1
3	Thin film GaAs solar cell enabled by direct rear side plating and patterned epitaxial lift-off., 2021,,.		4
4	Electroplated Copper Metal Contacts on Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100381.	5 . 8	8
5	Selective seed layer patterning of PVD metal stacks by electrochemical screen printing for solar cell applications. Progress in Photovoltaics: Research and Applications, 2020, 28, 538-544.	8.1	7
6	Application of hydrosilane-free atmospheric pressure chemical vapor deposition of SiOx films in the manufacture of crystalline silicon solar cells. Thin Solid Films, 2020, 713, 138338.	1.8	1
7	Conductive Highly Filled Suspensions for an Electrochemical Dispensing Approach to Pattern Full-Area Thin Metal Layers by Physical Vapour Deposition. Scientific Reports, 2020, 10, 7409.	3.3	3
8	Low-cost Cu-plated metallization on TCOs for SHJ Solar Cells - Optimization of PVD Contacting-layer. , 2020, , .		1
9	The First Glued Tandem Solar Cell Using a ZnO Based Adhesive. , 2020, , .		2
10	Electrical and optical analysis of a spray coated transparent conductive adhesive for two-terminal silicon based tandem solar cells. AIP Conference Proceedings, 2019, , .	0.4	4
11	Advances with resist-free copper plating approaches for the metallization of silicon heterojunction solar cells. AIP Conference Proceedings, 2019, , .	0.4	5
12	Establishing the "native oxide barrier layer for selective electroplated―metallization for bifacial silicon heterojunction solar cells. AIP Conference Proceedings, 2019, , .	0.4	5
13	Microcharacterization of Interface Oxide Layer on Laser-Structured Silicon Surfaces of Plated Ni–Cu Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1532-1540.	2.5	1
14	Native Oxide Barrier Layer for Selective Electroplated Metallization of Silicon Heterojunction Solar Cells. Solar Rrl, 2019, 3, 1900006.	5.8	20
15	Structuring of Metal Layers by Electrochemical Screen Printing for Back-Contact Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 676-682.	2.5	7
16	Novel Approach for the Bonding of III-V on Silicon Tandem Solar Cells with a Transparent Conductive Adhesive. , $2018, \ldots$		4
17	Novel mask-less plating metallization route for bifacial silicon heterojunction solar cells. AIP Conference Proceedings, 2018, , .	0.4	11
18	Development and characterization of multifunctional PECVD SiNX:P layers for laser-doped selective emitters. AIP Conference Proceedings, 2018, , .	0.4	2

#	Article	IF	CITATIONS
19	Optimized Adhesion of Plated Silicon Solar Cell Contacts by F ₂ â€Based Dry Atmospheric Pressure Nanoâ€Roughening. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800173.	1.8	1
20	Interface oxides in femtosecond laser structured plated Ni-Cu-Ag contacts for silicon solar cells. Solar Energy Materials and Solar Cells, 2017, 166, 197-203.	6.2	22
21	Selective plating concept for silicon heterojunction solar cell metallization. Energy Procedia, 2017, 124, 901-906.	1.8	7
22	Advances in PassDop technology: recombination and optics. Energy Procedia, 2017, 124, 313-320.	1.8	1
23	Easy Platingâ€"A Simple Approach to Suppress Parasitically Metallized Areas in Front Side Ni/Cu Plated Crystalline Si Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 1270-1277.	2.5	12
24	Laser Transfer and Firing of NiV Seed Layer for the Metallization of Silicon Heterojunction Solar Cells by Cu-Plating. Solar Rrl, 2017, 1, 1700085.	5.8	21
25	Novel Plating Processes for Silicon Heterojunction Solar Cell Metallization Using a Structured Seed Layer. IEEE Journal of Photovoltaics, 2017, 7, 1569-1573.	2.5	14
26	Optimizing Adhesion of Laser Structured Plated Ni-Cu Contacts with Insights from Micro Characterization. Energy Procedia, 2016, 92, 913-918.	1.8	8
27	High-Efficiency n-Type Silicon Solar Cells: Advances in PassDop Technology and NiCu Plating on Boron Emitter. IEEE Journal of Photovoltaics, 2016, 6, 419-425.	2.5	4
28	Electrochemical Contact Separation for PVD Aluminum Back Contact Solar Cells. Energy Procedia, 2015, 67, 70-75.	1.8	4
29	Characterization of Copper Diffusion in Silicon Solar Cells. Energy Procedia, 2015, 67, 93-100.	1.8	13
30	Electrical and Mechanical Properties of Plated Ni/Cu Contacts for Si Solar Cells. Energy Procedia, 2015, 77, 733-743.	1.8	25
31	Long term stability of copper front side contacts for crystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2015, 136, 25-31.	6.2	27
32	Origin of corrosion effects in solar cell contacts during electrochemical nickel deposition. Journal of Applied Electrochemistry, 2015, 45, 95-104.	2.9	4
33	21.8% Efficient n-type Solar Cells with Industrially Feasible Plated Metallization. Energy Procedia, 2014, 55, 400-409.	1.8	29
34	Plating Processes on Aluminum and Application to Novel Solar Cell Concepts. Energy Procedia, 2014, 55, 679-687.	1.8	5
35	Long Term Stability Analysis of Copper Front Side Metallization for Silicon Solar Cells. Energy Procedia, 2014, 55, 478-485.	1.8	12
36	High efficiency n-type PERT and PERL solar cells. , 2014, , .		16

#	Article	IF	CITATIONS
37	Zincate processes for silicon solar cell metallization. Solar Energy Materials and Solar Cells, 2014, 120, 332-338.	6.2	16
38	Nickel-plated Front Contacts for Front and Rear Emitter Silicon Solar Cells. Energy Procedia, 2013, 38, 449-458.	1.8	25
39	Perovskite Silicon Tandem Solar Cells for Resource Efficient Photovoltaics. , 0, , .		O