
Antonella Casola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12156057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lack of Type I Interferon Signaling Ameliorates Respiratory Syncytial Virus-Induced Lung Inflammation and Restores Antioxidant Defenses. Antioxidants, 2022, 11, 67.	2.2	5
2	Human Metapneumovirus (Pneumoviridae). , 2021, , 475-482.		0
3	HIF-1α Modulates Core Metabolism and Virus Replication in Primary Airway Epithelial Cells Infected with Respiratory Syncytial Virus. Viruses, 2020, 12, 1088.	1.5	26
4	Selective Blockade of TNFR1 Improves Clinical Disease and Bronchoconstriction in Experimental RSV Infection. Viruses, 2020, 12, 1176.	1.5	12
5	Increased Lung Catalase Activity Confers Protection Against Experimental RSV Infection. Scientific Reports, 2020, 10, 3653.	1.6	25
6	A Polymorphism in the Catalase Gene Promoter Confers Protection against Severe RSV Bronchiolitis. Viruses, 2020, 12, 57.	1.5	8
7	Antiviral and Immunomodulatory Activity of Silver Nanoparticles in Experimental RSV Infection. Viruses, 2019, 11, 732.	1.5	154
8	Cystathionine γ-lyase deficiency enhances airway reactivity and viral-induced disease in mice exposed to side-stream tobacco smoke. Pediatric Research, 2019, 86, 39-46.	1.1	9
9	Human metapneumovirus infection of airway epithelial cells is associated with changes in core metabolic pathways. Virology, 2019, 531, 183-191.	1.1	16
10	Cigarette Smoke Condensate Exposure Changes RNA Content of Extracellular Vesicles Released from Small Airway Epithelial Cells. Cells, 2019, 8, 1652.	1.8	26
11	Respiratory Syncytial Virus Infection Changes Cargo Composition of Exosome Released from Airway Epithelial Cells. Scientific Reports, 2018, 8, 387.	1.6	93
12	2385 Role of the antioxidant enzyme catalase in respiratory syncytial virus infection. Journal of Clinical and Translational Science, 2018, 2, 26-26.	0.3	0
13	Human Metapneumovirus Small Hydrophobic Protein Inhibits Interferon Induction in Plasmacytoid Dendritic Cells. Viruses, 2018, 10, 278.	1.5	9
14	Role of Hydrogen Sulfide in NRF2- and Sirtuin-Dependent Maintenance of Cellular Redox Balance. Antioxidants, 2018, 7, 129.	2.2	109
15	Protective Role of Nuclear Factor Erythroid 2-Related Factor 2 Against Respiratory Syncytial Virus and Human Metapneumovirus Infections. Frontiers in Immunology, 2018, 9, 854.	2.2	29
16	Thiol-Activated Hydrogen Sulfide Donors Antiviral and Anti-Inflammatory Activity in Respiratory Syncytial Virus Infection. Viruses, 2018, 10, 249.	1.5	28
17	A Polymorphism in the Catalase Gene Promoter Confers Protection Against Severe RSV Bronchiolitis. Journal of Allergy and Clinical Immunology, 2018, 141, AB10.	1.5	2
18	Broad-Range Antiviral Activity of Hydrogen Sulfide Against Highly Pathogenic RNA Viruses. Scientific Reports, 2017, 7, 41029.	1.6	53

#	Article	IF	CITATIONS
19	Hydrogen Sulfide: A Novel Player in Airway Development, Pathophysiology of Respiratory Diseases, and Antiviral Defenses. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 403-410.	1.4	79
20	Respiratory syncytial virus induces NRF2 degradation through a promyelocytic leukemia protein ―ring finger protein 4 dependent pathway. Free Radical Biology and Medicine, 2017, 113, 494-504.	1.3	47
21	Respiratory Syncytial Virus Infection Triggers Epithelial HMGB1 Release as a Damage-Associated Molecular Pattern Promoting a Monocytic Inflammatory Response. Journal of Virology, 2016, 90, 9618-9631.	1.5	70
22	Hydrogen Sulfide Is an Antiviral and Antiinflammatory Endogenous Gasotransmitter in the Airways. Role in Respiratory Syncytial Virus Infection. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 684-696.	1.4	69
23	Exosomes and Their Role in the Life Cycle and Pathogenesis of RNA Viruses. Viruses, 2015, 7, 3204-3225.	1.5	200
24	Oxidative stress in Nipah virus-infected human small airway epithelial cells. Journal of General Virology, 2015, 96, 2961-2970.	1.3	9
25	Role of dietary antioxidants in human metapneumovirus infection. Virus Research, 2015, 200, 19-23.	1.1	17
26	Role of Hydrogen Sulfide in Paramyxovirus Infections. Journal of Virology, 2015, 89, 5557-5568.	1.5	67
27	Mitochondrial antiviral-signalling protein plays an essential role in host immunity against human metapneumovirus. Journal of General Virology, 2015, 96, 2104-2113.	1.3	12
28	Respiratory syncytial virus infection down-regulates antioxidant enzyme expression by triggering deacetylation-proteasomal degradation of Nrf2. Free Radical Biology and Medicine, 2015, 88, 391-403.	1.3	69
29	Respiratory Syncytial Virus Infection Downregulates Antioxidant Enzyme Expression by Triggering Nrf2 Degradation. FASEB Journal, 2015, 29, 718.25.	0.2	1
30	Paramyxovirus Infection Regulates T Cell Responses by BDCA-1+ and BDCA-3+ Myeloid Dendritic Cells. PLoS ONE, 2014, 9, e99227.	1.1	5
31	Alveolar Macrophages Contribute to the Pathogenesis of Human Metapneumovirus Infection while Protecting against Respiratory Syncytial Virus Infection. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 502-515.	1.4	92
32	Respiratory Viral Infections and Subversion of Cellular Antioxidant Defenses. Journal of Pharmacogenomics & Pharmacoproteomics, 2014, 05, .	0.2	64
33	MyD88 controls human metapneumovirus-induced pulmonary immune responses and disease pathogenesis. Virus Research, 2013, 176, 241-250.	1.1	13
34	CDK9-Dependent Transcriptional Elongation in the Innate Interferon-Stimulated Gene Response to Respiratory Syncytial Virus Infection in Airway Epithelial Cells. Journal of Virology, 2013, 87, 7075-7092.	1.5	72
35	Respiratory Syncytial Virus Infection: Mechanisms of Redox Control and Novel Therapeutic Opportunities. Antioxidants and Redox Signaling, 2013, 18, 186-217.	2.5	79
36	Human Metapneumovirus Glycoprotein G Disrupts Mitochondrial Signaling in Airway Epithelial Cells. PLoS ONE, 2013, 8, e62568.	1.1	27

#	Article	IF	CITATIONS
37	Critical Role of TLR4 in Human Metapneumovirus Mediated Innate Immune Responses and Disease Pathogenesis. PLoS ONE, 2013, 8, e78849.	1.1	13
38	Host-Viral Interactions: Role of Pattern Recognition Receptors (PRRs) in Human Pneumovirus Infections. Pathogens, 2013, 2, 232-263.	1.2	36
39	Antioxidant mimetics modulate oxidative stress and cellular signaling in airway epithelial cells infected with respiratory syncytial virus. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L991-L1000.	1.3	42
40	Human Metapneumovirus Antagonism of Innate Immune Responses. Viruses, 2012, 4, 3551-3571.	1.5	22
41	Interleukinâ€8 gene regulation in epithelial cells by <i>Vibrio cholerae</i> : role of multiple promoter elements, adherence and motility of bacteria and host MAPKs. FEBS Journal, 2012, 279, 1464-1473.	2.2	7
42	TAK1 regulates NF-ΚB and AP-1 activation in airway epithelial cells following RSV infection. Virology, 2011, 418, 93-101.	1.1	32
43	A novel mechanism for the inhibition of interferon regulatory factor-3-dependent gene expression by human respiratory syncytial virus NS1 protein. Journal of General Virology, 2011, 92, 2153-2159.	1.3	75
44	Viral-mediated Inhibition of Antioxidant Enzymes Contributes to the Pathogenesis of Severe Respiratory Syncytial Virus Bronchiolitis. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1550-1560.	2.5	140
45	Human Metapneumovirus Glycoprotein G Inhibits TLR4-Dependent Signaling in Monocyte-Derived Dendritic Cells. Journal of Immunology, 2011, 187, 47-54.	0.4	48
46	Human Metapneumovirus Inhibits IFN-β Signaling by Downregulating Jak1 and Tyk2 Cellular Levels. PLoS ONE, 2011, 6, e24496.	1.1	37
47	IKKε modulates RSV-induced NF-κB-dependent gene transcription. Virology, 2010, 408, 224-231.	1.1	25
48	Respiratory Syncytial Virus Induces Oxidative Stress by Modulating Antioxidant Enzymes. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 348-357.	1.4	170
49	Subversion of Pulmonary Dendritic Cell Function by Paramyxovirus Infections. Journal of Immunology, 2009, 182, 3072-3083.	0.4	70
50	Dachshund inhibits oncogene-induced breast cancer cellular migration and invasion through suppression of interleukin-8. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6924-6929.	3.3	92
51	Human Metapneumovirus Glycoprotein G Inhibits Innate Immune Responses. PLoS Pathogens, 2008, 4, e1000077.	2.1	104
52	Human Metapneumovirus Small Hydrophobic Protein Inhibits NF-κB Transcriptional Activity. Journal of Virology, 2008, 82, 8224-8229.	1.5	55
53	T Lymphocytes Contribute to Antiviral Immunity and Pathogenesis in Experimental Human Metapneumovirus Infection. Journal of Virology, 2008, 82, 8560-8569.	1.5	74
54	Cigarette Smoke Condensate Enhances Respiratory Syncytial Virus–Induced Chemokine Release by Modulating NF-kappa B and Interferon Regulatory Factor Activation. Toxicological Sciences, 2008, 106, 509-518.	1.4	23

#	Article	IF	CITATIONS
55	Inhibition of Respiratory Syncytial Virus Infections With Morpholino Oligomers in Cell Cultures and in Mice. Molecular Therapy, 2008, 16, 1120-1128.	3.7	51
56	Effect of NMSO3 treatment in a murine model of human metapneumovirus infection. Journal of General Virology, 2008, 89, 2709-2712.	1.3	10
57	Impairment of lung dendritic cell antigen presenting capacity by human paramyxovirus infections. FASEB Journal, 2008, 22, 856.3.	0.2	0
58	Retinoic Acid-Inducible Gene I Mediates Early Antiviral Response and Toll-Like Receptor 3 Expression in Respiratory Syncytial Virus-Infected Airway Epithelial Cells. Journal of Virology, 2007, 81, 1401-1411.	1.5	280
59	Regulation of CXCL-8 (Interleukin-8) Induction by Double-Stranded RNA Signaling Pathways during Hepatitis C Virus Infection. Journal of Virology, 2007, 81, 309-318.	1.5	71
60	Ikkepsilon regulates viral-induced interferon regulatory factor-3 activation via a redox-sensitive pathway. Virology, 2006, 353, 155-165.	1.1	46
61	Differential Response of Dendritic Cells to Human Metapneumovirus and Respiratory Syncytial Virus. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 320-329.	1.4	171
62	Antioxidant Treatment Ameliorates Respiratory Syncytial Virus–induced Disease and Lung Inflammation. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 1361-1369.	2.5	144
63	Interleukin-8 Induction by <i>Helicobacter pylori</i> in Gastric Epithelial Cells is Dependent on Apurinic/Apyrimidinic Endonuclease-1/Redox Factor-1. Journal of Immunology, 2006, 177, 7990-7999.	0.4	46
64	RSV-induced prostaglandin E2 production occurs via cPLA2 activation: Role in viral replication. Virology, 2005, 343, 12-24.	1.1	44
65	Respiratory Syncytial Virus-Inducible BCL-3 Expression Antagonizes the STAT/IRF and NF-κB Signaling Pathways by Inducing Histone Deacetylase 1 Recruitment to the Interleukin-8 Promoter. Journal of Virology, 2005, 79, 15302-15313.	1.5	53
66	Activity and Regulation of Alpha Interferon in Respiratory Syncytial Virus and Human Metapneumovirus Experimental Infections. Journal of Virology, 2005, 79, 10190-10199.	1.5	114
67	Human Metapneumovirus Induces a Profile of Lung Cytokines Distinct from That of Respiratory Syncytial Virus. Journal of Virology, 2005, 79, 14992-14997.	1.5	90
68	Regulation of RANTES Promoter Activation in Gastric Epithelial Cells Infected with Helicobacter pylori. Infection and Immunity, 2005, 73, 7602-7612.	1.0	47
69	Reactive Oxygen Species Mediate Virus-induced STAT Activation. Journal of Biological Chemistry, 2004, 279, 2461-2469.	1.6	136
70	lκB Kinase Is a Critical Regulator of Chemokine Expression and Lung Inflammation in Respiratory Syncytial Virus Infection. Journal of Virology, 2004, 78, 2232-2241.	1.5	60
71	Suppression of Proinflammatory Cytokine Expression by Herpes Simplex Virus Type 1. Journal of Virology, 2004, 78, 5883-5890.	1.5	66
72	Nuclear Heat Shock Response and Novel Nuclear Domain 10 Reorganization in Respiratory Syncytial Virus-Infected A549 Cells Identified by High-Resolution Two-Dimensional Gel Electrophoresis. Journal of Virology, 2004, 78, 11461-11476.	1.5	83

#	Article	IF	CITATIONS
73	Role of interferon-stimulated responsive element-like element in interleukin-8 promoter in Helicobacter pylori infectionâ~†. Gastroenterology, 2004, 126, 1030-1043.	0.6	126
74	Ribavirin Treatment Up-Regulates Antiviral Gene Expression via the Interferon-Stimulated Response Element in Respiratory Syncytial Virus-Infected Epithelial Cells. Journal of Virology, 2003, 77, 5933-5947.	1.5	108
75	Identification of NF-κB-Dependent Gene Networks in Respiratory Syncytial Virus-Infected Cells. Journal of Virology, 2002, 76, 6800-6814.	1.5	135
76	Respiratory Syncytial Virus–Induced Activation of Nuclear Factor–κB in the Lung Involves Alveolar Macrophages and Toll‣ike Receptor 4–Dependent Pathways. Journal of Infectious Diseases, 2002, 186, 1199-1206.	1.9	225
77	MAPK activation is involved in posttranscriptional regulation of RSV-induced RANTES gene expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L364-L372.	1.3	63
78	Regulation of RANTES promoter activation in alveolar epithelial cells after cytokine stimulation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L1280-L1290.	1.3	59
79	Interleukin-8 Gene Regulation in Intestinal Epithelial Cells Infected with Rotavirus: Role of Viral-Induced ll̂ºB Kinase Activation. Virology, 2002, 298, 8-19.	1.1	52
80	IFN-β mediates coordinate expression of antigen-processing genes in RSV-infected pulmonary epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L248-L257.	1.3	62
81	Multiple cis Regulatory Elements Control RANTES Promoter Activity in Alveolar Epithelial Cells Infected with Respiratory Syncytial Virus. Journal of Virology, 2001, 75, 6428-6439.	1.5	98
82	Oxidant Tone Regulates RANTES Gene Expression in Airway Epithelial Cells Infected with Respiratory Syncytial Virus. Journal of Biological Chemistry, 2001, 276, 19715-19722.	1.6	113
83	Inducible Expression of Inflammatory Chemokines in Respiratory Syncytial Virus-Infected Mice: Role of MIP-1α in Lung Pathology. Journal of Virology, 2001, 75, 878-890.	1.5	171
84	Expression of Respiratory Syncytial Virus-Induced Chemokine Gene Networks in Lower Airway Epithelial Cells Revealed by cDNA Microarrays. Journal of Virology, 2001, 75, 9044-9058.	1.5	210
85	Requirement of a Novel Upstream Response Element in Respiratory Syncytial Virus-Induced IL-8 Gene Expression. Journal of Immunology, 2000, 164, 5944-5951.	0.4	95
86	Nuclear Factor-κB–Dependent Induction of Interleukin-8 Gene Expression by Tumor Necrosis Factor : Evidence for an Antioxidant Sensitive Activating Pathway Distinct From Nuclear Translocation. Blood, 1999, 94, 1878-1889.	0.6	216
87	Nuclear Factor-κB–Dependent Induction of Interleukin-8 Gene Expression by Tumor Necrosis Factor : Evidence for an Antioxidant Sensitive Activating Pathway Distinct From Nuclear Translocation. Blood, 1999, 94, 1878-1889.	0.6	27
88	A Promoter Recruitment Mechanism for Tumor Necrosis Factor-α-induced Interleukin-8 Transcription in Type II Pulmonary Epithelial Cells. Journal of Biological Chemistry, 1998, 273, 3551-3561.	1.6	153
89	Cell-Specific Expression of RANTES, MCP-1, and MIP-1α by Lower Airway Epithelial Cells and Eosinophils Infected with Respiratory Syncytial Virus. Journal of Virology, 1998, 72, 4756-4764.	1.5	246
90	The Major Component of ll̂ºBα Proteolysis Occurs Independently of the Proteasome Pathway in Respiratory Syncytial Virus-Infected Pulmonary Epithelial Cells. Journal of Virology, 1998, 72, 4849-4857.	1.5	78

#	Article	IF	CITATIONS
91	Human Serum Immunoglobulin Counteracts Rotaviral Infection in Caco-2 Cells1. Pediatric Research, 1996, 40, 881-887.	1.1	13
92	In Vivo and In Vitro Effects of Human Growth Hormone on Rat Intestinal Ion Transport. Pediatric Research, 1995, 37, 576-580.	1.1	31
93	Inhibition of Antiviral Signaling Pathways by Paramyxovirus Proteins. , 0, , 247-265.		Ο