Wolff-Michael Roth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12155750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	"Vygotsky's Neglected Legacy― Cultural-Historical Activity Theory. Review of Educational Research, 2007, 77, 186-232.	4.3	716
2	Gestures: Their Role in Teaching and Learning. Review of Educational Research, 2001, 71, 365-392.	4.3	331
3	Science education as/for participation in the community. Science Education, 2004, 88, 263-291.	1.8	324
4	Rethinking Scientific Literacy. , 0, , .		285
5	Authentic School Science. , 1995, , .		280
6	Inscriptions: Toward a Theory of Representing as Social Practice. Review of Educational Research, 1998, 68, 35-59.	4.3	276
7	The development of science process skills in authentic contexts. Journal of Research in Science Teaching, 1993, 30, 127-152.	2.0	223
8	Preparing Students for Competent Scientific Practice: Implications of Recent Research in Science and Technology Studies. Educational Researcher, 1999, 28, 14-24.	3.3	193
9	Physics students' epistemologies and views about knowing and learning. Journal of Research in Science Teaching, 1994, 31, 5-30.	2.0	188
10	Prevalence, function, and structure of photographs in high school biology textbooks. Journal of Research in Science Teaching, 2003, 40, 1089-1114.	2.0	170
11	Differences in graph-related practices between high school biology textbooks and scientific ecology journals. Journal of Research in Science Teaching, 1999, 36, 977-1019.	2.0	168
12	The Social Construction of Scientific Concepts or the Concept Map as Device and Tool Thinking in High Conscription for Social School Science. Science Education, 1992, 76, 531-557.	1.8	162
13	The concept map as a tool for the collaborative construction of knowledge: A microanalysis of high school physics students. Journal of Research in Science Teaching, 1993, 30, 503-534.	2.0	162
14	Experimenting in a constructivist high school physics laboratory. Journal of Research in Science Teaching, 1994, 31, 197-223.	2.0	159
15	Knowing and Interacting: A Study of Culture, Practices, and Resources in a Grade 8 Open-Inquiry Science Classroom Guided by a Cognitive Apprenticeship Metaphor. Cognition and Instruction, 1995, 13, 73-128.	1.9	154
16	What Good Is Polarizing Research Into Qualitative and Quantitative?. Educational Researcher, 2006, 35, 14-23.	3.3	146
17	Art and Artifact of Children's Designing: A Situated Cognition Perspective. Journal of the Learning Sciences, 1996, 5, 129-166.	2.0	135
18	Teacher questioning in an open-inquiry learning environment: Interactions of context, content, and student responses. Journal of Research in Science Teaching, 1996, 33, 709-736.	2.0	130

#	Article	IF	CITATIONS
19	Scientific literacy as collective praxis. Public Understanding of Science, 2002, 11, 33-56.	1.6	124
20	From ?truth? to ?invented reality?: A discourse analysis of high school physics students' talk about scientific knowledge. Journal of Research in Science Teaching, 1997, 34, 145-179.	2.0	123
21	Where IS the Context in Contextual Word Problem?: Mathematical Practices and Products in Grade 8 Students' Answers to Story Problems. Cognition and Instruction, 1996, 14, 487-527.	1.9	121
22	Re/Making Identities in the Praxis of Urban Schooling: A Cultural Historical Perspective. Mind, Culture, and Activity, 2004, 11, 48-69.	1.1	109
23	Professionals Read Graphs: A Semiotic Analysis. Journal for Research in Mathematics Education, 2001, 32, 159.	1.0	105
24	Contradictions in theorizing and implementing communities in education. Educational Research Review, 2006, 1, 27-40.	4.1	105
25	When Are Graphs Worth Ten Thousand Words? An Expert-Expert Study. Cognition and Instruction, 2003, 21, 429-473.	1.9	103
26	Keeping the local local: Recalibrating the status of science and traditional ecological knowledge (TEK) in education. Science Education, 2007, 91, 926-947.	1.8	103
27	Why may students fail to learn from demonstrations? A social practice perspective on learning in physics. Journal of Research in Science Teaching, 1997, 34, 509-533.	2.0	102
28	Fostering conceptual change by analogies—between Scylla and Charybdis. Learning and Instruction, 2001, 11, 283-303.	1.9	101
29	Coteaching: Creating resources for learning and learning to teach chemistry in urban high schools. Journal of Research in Science Teaching, 2004, 41, 882-904.	2.0	101
30	Affordances of computers in teacher-student interactions: The case of interactive physicsâ,,¢. Journal of Research in Science Teaching, 1995, 32, 329-347.	2.0	100
31	How Prepared Are Preservice Teachers to Teach Scientific Inquiry? Levels of Performance in Scientific Representation Practices. Journal of Science Teacher Education, 1998, 9, 25-48.	1.4	96
32	Graphing: Cognitive ability or practice?. Science Education, 1997, 81, 91-106.	1.8	94
33	Interpretations of graphs by university biology students and practicing scientists: Toward a social practice view of scientific representation practices. Journal of Research in Science Teaching, 1999, 36, 1020-1043.	2.0	92
34	From activity to gestures and scientific language. Journal of Research in Science Teaching, 2001, 38, 103-136.	2.0	89
35	From gesture to scientific language. Journal of Pragmatics, 2000, 32, 1683-1714.	0.8	87
36	Making sense of photographs. Science Education, 2005, 89, 219-241.	1.8	86

#	Article	IF	CITATIONS
37	Differential Participation During Science Conversations: The Interaction of Focal Artifacts, Social Configurations, and Physical Arrangements. Journal of the Learning Sciences, 1999, 8, 293-347.	2.0	85
38	>unDELETE science education:/lives/work/voices. Journal of Research in Science Teaching, 1998, 35, 399-421.	2.0	80
39	Situating Cognition. Journal of the Learning Sciences, 2001, 10, 27-61.	2.0	80
40	Title is missing!. Educational Assessment, Evaluation and Accountability, 2001, 15, 7-29.	0.2	78
41	Becoming-in-the-classroom: a case study of teacher development through coteaching. Teaching and Teacher Education, 1999, 15, 771-784.	1.6	77
42	The nature of scientific conceptions: A discursive psychological perspective. Educational Research Review, 2008, 3, 30-50.	4.1	74
43	INTRODUCTION: "Activity Theory and Education: An Introduction". Mind, Culture, and Activity, 2004, 11, 1-8.	1.1	73
44	Mathematization of experience in a grade 8 open-inquiry environment: An introduction to the representational practices of science. Journal of Research in Science Teaching, 1994, 31, 293-318.	2.0	72
45	Data and graph interpretation practices among preservice science teachers. Journal of Research in Science Teaching, 2005, 42, 1063-1088.	2.0	72
46	The local production of order in traditional science laboratories: A phenomenological analysis. Learning and Instruction, 1997, 7, 107-136.	1.9	68
47	Lessons on and from the dihybrid cross: An activity-theoretical study of learning in coteaching. Journal of Research in Science Teaching, 2002, 39, 253-282.	2.0	68
48	Intercorporeality and ethical commitment: an activity perspective on classroom interaction. Educational Studies in Mathematics, 2011, 77, 227-245.	1.8	68
49	Toward an Anthropology of Graphing. , 2003, , .		66
50	Why Students May not Learn to Interpret Scientific Inscriptions. Research in Science Education, 2002, 32, 303-327.	1.4	64
51	Digitizing Lizards. Social Studies of Science, 1999, 29, 719-764.	1.5	63
52	Inventors, copycats, and everyone else: The emergence of shared resources and practices as defining aspects of classroom communities. Science Education, 1995, 79, 475-502.	1.8	62
53	Student views of collaborative concept mapping: An emancipatory research project. Science Education, 1994, 78, 1-34.	1.8	60
54	Complexities of graphical representations during ecology lectures: an analysis rooted in semiotics and hermeneutic phenomenology. Learning and Instruction, 1999, 9, 235-255.	1.9	59

#	Article	IF	CITATIONS
55	Toward a new conception of conceptions: Interplay of talk, gestures, and structures in the setting. Journal of Research in Science Teaching, 2006, 43, 1086-1109.	2.0	59
56	Chemical inscriptions in Korean textbooks: Semiotics of macro- and microworld. Science Education, 2006, 90, 173-201.	1.8	57
57	Affordances and constraints of computers in science education. Journal of Research in Science Teaching, 1996, 33, 995-1017.	2.0	54
58	CHILDREN'S CESTURES AND THE EMBODIED KNOWLEDGE OF GEOMETRY. International Journal of Science and Mathematics Education, 2011, 9, 207-238.	1.5	49
59	What More in/for Science Education. , 2013, , .		45
60	On performing concepts during science lectures. Science Education, 2007, 91, 96-114.	1.8	44
61	An Investigation of Problem Framing and Solving in a Grade 8 Open-Inquiry Science Program. Journal of the Learning Sciences, 1994, 3, 165-204.	2.0	43
62	The co-evolution of situated language and physics knowing. Journal of Science Education and Technology, 1996, 5, 171-191.	2.4	40
63	Learning and teaching as emergent features of informal settings: An ethnographic study in an environmental action group. Science Education, 2006, 90, 1028-1049.	1.8	40
64	Authentic science experiences as a vehicle to change students' orientations toward science and scientific career choices: Learning from the path followed by Brad. Cultural Studies of Science Education, 2009, 4, 611-638.	0.9	40
65	Cautions about Inferences from International Assessments: The Case of PISA 2009. Teachers College Record, 2015, 117, 1-28.	0.4	40
66	Coordination in coteaching: Producing alignment in real time. Science Education, 2005, 89, 675-702.	1.8	39
67	The Practice of Field Ecology: Insights for Science Education. Research in Science Education, 2007, 37, 171-187.	1.4	39
68	Spielraumand Teaching. Curriculum Inquiry, 2001, 31, 183-207.	0.8	38
69	Photographs in lectures: Gestures as meaning-making resources. Linguistics and Education, 2004, 15, 275-293.	0.5	38
70	Mathematical Inscriptions and the Reflexive Elaboration of Understanding: An Ethnography of Graphing and Numeracy in a Fish Hatchery. Mathematical Thinking and Learning, 2005, 7, 75-110.	0.7	38
71	The nature of scientific knowledge and student learning: Two longitudinal case studies. Research in Science Education, 1996, 26, 103-127.	1.4	37
72	The Role of Representations in Engineering Practices: Taking a Turn towards Inscriptions. Journal of Engineering Education, 2013, 102, 2-19.	1.9	37

#	Article	IF	CITATIONS
73	More than the code. Communications of the ACM, 2018, 61, 66-71.	3.3	37
74	The transformation of individual and collective knowledge in elementary science classrooms that are organised as knowledge-building communities. Research in Science Education, 1995, 25, 163-189.	1.4	36
75	Reading graphs: Contributions to an integrative concept of literacy. Journal of Curriculum Studies, 2002, 34, 1-24.	1.2	35
76	Differential Participation During Science Conversations: The Interaction of Focal Artifacts, Social Configurations, and Physical Arrangements. Journal of the Learning Sciences, 1999, 8, 293-347.	2.0	35
77	Applications of Science and Technology Studies: Effecting Change in Science Education. Science Technology and Human Values, 1996, 21, 454-484.	1.7	34
78	How Ditch and Drain Become a Healthy Creek. Social Studies of Science, 2001, 31, 315-356.	1.5	34
79	Understanding Educational Psychology. Cultural Psychology of Education, 2017, , .	0.1	34
80	Cultural diversity in science education through <i>Novelization</i> : Against the <i>Epicization</i> of science and cultural centralization. Journal of Research in Science Teaching, 2011, 48, 824-847.	2.0	33
81	Proliferation of inscriptions and transformations among preservice science teachers engaged in authentic science. Journal of Research in Science Teaching, 2007, 44, 538-564.	2.0	32
82	Reading <i>Activity, Consciousness, Personality</i> Dialectically: Cultural-Historical Activity Theory and the Centrality of Society. Mind, Culture, and Activity, 2014, 21, 4-20.	1.1	32
83	Rules of bending, bending the rules: the geometry of electrical conduit bending in college and workplace. Educational Studies in Mathematics, 2014, 86, 177-192.	1.8	32
84	Interpreting unfamiliar graphs: A generative, activity theoretic model. Educational Studies in Mathematics, 2004, 57, 265-290.	1.8	31
85	From a Sense of Stereotypically Foreign to Belonging in a Science Community: Ways of Experiential Descriptions About High School Students' Science Internship. Research in Science Education, 2010, 40, 291-311.	1.4	31
86	Cultural-historical activity theory: Vygotsky's forgotten and suppressed legacy and its implication for mathematics education. Mathematics Education Research Journal, 2012, 24, 87-104.	0.9	31
87	Knowing, researching, and reporting science education: Lessons from science and technology studies. Journal of Research in Science Teaching, 1998, 35, 213-235.	2.0	30
88	Lecturing graphing: What features of lectures contribute to student difficulties in learning to interpret graph?. Research in Science Education, 1998, 28, 77-90.	1.4	30
89	From "wiggly structures―to "unshaky towers― problem framing, solution finding, and negotiation of courses of actions during a civil engineering unit for elementary students. Research in Science Education, 1995, 25, 365-381.	1.4	29
90	Staging Aristotle and natural observation against Galileo and (stacked) scientific experiment or physics lectures as rhetorical events. Journal of Research in Science Teaching, 1996, 33, 135-157.	2.0	28

#	Article	IF	CITATIONS
91	From epistemic (ergotic) actions to scientific discourse. Pragmatics and Cognition, 2003, 11, 141-170.	0.2	28
92	Improving Science Education for Sustainable Development. PLoS Biology, 2007, 5, e306.	2.6	28
93	â€~Enculturation': Acquisition of conceptual blind spots and epistemological prejudices. British Educational Research Journal, 2001, 27, 5-27.	1.4	27
94	Science in Schools and Everywhere Else: What Science Educators Should Know about Science and Technology Studies. Studies in Science Education, 1997, 29, 1-43.	3.4	26
95	Of Cannibals, Missionaries, and Converts: Graphing Competencies from Grade 8 to Professional Science Inside (Classrooms) and Outside (Field/Laboratory). Science Technology and Human Values, 1999, 24, 179-212.	1.7	26
96	Competent Workplace Mathematics: How Signs Become Transparent in Use. International Journal of Computers for Mathematical Learning, 2003, 8, 161-189.	0.6	26
97	Representations of scientists in Canadian high school and college textbooks. Journal of Research in Science Teaching, 2008, 45, 1059-1082.	2.0	25
98	Interactional structures during a grade 4-5 open-design engineering unit. Journal of Research in Science Teaching, 1997, 34, 273-302.	2.0	24
99	Decalages in Talk and Gesture: Visual and Verbal Semiotics of Ecology Lectures. Linguistics and Education, 1998, 10, 335-358.	0.5	24
100	Teaching and Learning as Everyday Activity. , 1998, , 169-181.		24
101	Metaphors and conversational analysis as tools in reflection on teaching practice: Two perspectives on teacher-student interactions in open-inquiry science. Science Education, 1993, 77, 351-373.	1.8	23
102	The Emergence of 3D Geometry From Children's (Teacher-Guided) Classification Tasks. Journal of the Learning Sciences, 2009, 18, 45-99.	2.0	23
103	Theorizing scientific literacy in the wild. Educational Research Review, 2010, 5, 184-194.	4.1	22
104	Bridging the Gap Between School and Real Life: Toward an Integration of Science, Mathematics, and Technology in the Context of Authentic Practice. School Science and Mathematics, 1992, 92, 307-317.	0.5	21
105	Translations of scientific practice to "students' images of science― Science Education, 2009, 93, 611-634.	1.8	21
106	Learning to talk engineering design: Results from an interpretive study in a Grade 4/5 classroom. International Journal of Technology and Design Education, 1996, 6, 107-135.	1.7	20
107	Modeling design as situated and distributed process. Learning and Instruction, 2001, 11, 211-239.	1.9	20
108	Natural pedagogical conversations in high school students' internship. Journal of Research in Science Teaching, 2009, 46, 481-505.	2.0	20

#	Article	IF	CITATIONS
109	Teaching as mediation: The cogenerative dialogue and ethical understandings. Teaching and Teacher Education, 2010, 26, 363-370.	1.6	20
110	The theory-practice gap: epistemology, identity, and education. Education and Training, 2014, 56, 521-536.	1.7	20
111	Pictures in Biology Education. Models and Modeling in Science Education, 2013, , 39-53.	0.6	18
112	Toward a Social Practice Perspective on the Work of Reading Inscriptions in Science Texts. Reading Psychology, 2010, 31, 228-253.	0.7	17
113	Radical embodiment and semiotics: toward a theory of mathematics in the flesh. Educational Studies in Mathematics, 2011, 77, 267-284.	1.8	17
114	Emergence of Graphing Practices in Scientific Research. Journal of Cognition and Culture, 2004, 4, 595-627.	0.1	16
115	Investigating Linguistic Sources of Differential Item Functioning Using Expert Think-Aloud Protocols in Science Achievement Tests. International Journal of Science Education, 2013, 35, 546-576.	1.0	16
116	Toward a New Perspective on Problem Solving. Canadian Journal of Education, 1997, 22, 18.	0.3	14
117	An Analysis of Teacher Discourse that Introduces Real Science Activities to High School Students. Research in Science Education, 2009, 39, 553-574.	1.4	14
118	Comments to the "methodological limitations for the use of expert systems techniques in science education research― Journal of Research in Science Teaching, 1992, 29, 629-632.	2.0	13
119	Teacher-as-Researcher Reform: Student Achievement and Perceptions of Learning Environment. Learning Environments Research, 1998, 1, 75-93.	1.8	13
120	Rethinking the ethics of scientific knowledge: A case study of teaching the environment in science classrooms. Asia Pacific Education Review, 2008, 9, 516-528.	1.4	13
121	Personal Health—Personalized Science: A new driver for science education?. International Journal of Science Education, 2014, 36, 1434-1456.	1.0	13
122	On the Subject, Self, and Individual or Monolingualism of the Other and the Possible Impossibility ofBabel Fish. Mind, Culture, and Activity, 2007, 14, 227-234.	1.1	12
123	Schooling Is the Problem: A Plaidoyer forÂltsÂDeinstitutionalization. Canadian Journal of Science, Mathematics and Technology Education, 2015, 15, 315-331.	0.6	12
124	Enracinement or the earth, the originary ark, does not move: on the phenomenological (historical) Tj ETQq0 0 0 understanding. Cultural Studies of Science Education, 2015, 10, 469-494.	rgBT /Ove 0.9	rlock 10 Tf 50 11
125	Gesture-Speech Phenomena, Learning, and Development. Educational Psychologist, 2003, 38, 249-263.	4.7	10
126	Fostering Pre-service Teachers' Self-Determined Environmental Motivation Through Green Chemistry Experiments. Journal of Science Teacher Education, 2012, 23, 673-696.	1.4	10

#	Article	IF	CITATIONS
127	Rethinking Affect in Education From a Societal-Historical Perspective: The Case of Mathematics Anxiety. Mind, Culture, and Activity, 2015, 22, 217-232.	1.1	10
128	Quasi-communities: rethinking learning in formal adult and vocational education. Instructional Science, 2016, 44, 583-600.	1.1	10
129	Meaning and the real life of language—Learning from "pathological―cases in science classrooms. Linguistics and Education, 2015, 30, 42-55.	0.5	9
130	Of Traversals and Hybrid Spaces: Science in the Community. Mind, Culture, and Activity, 2003, 10, 120-142.	1.1	8
131	Science of learning is learning of science: why we need a dialectical approach to science education research. Cultural Studies of Science Education, 2012, 7, 255-277.	0.9	8
132	Learning difficulties related to graphing: A hermeneutic phenomenological perspective. Research in Science Education, 2000, 30, 123-139.	1.4	7
133	Reading Online News Media for Science Content: A Social Psychological Approach. Reading Psychology, 2010, 31, 254-281.	0.7	6
134	Optimizing a workplace learning pattern: a case study from aviation. Journal of Workplace Learning, 2015, 27, 112-127.	0.9	6
135	A dialectical materialist reading of the sign. Semiotica, 2006, 2006, .	0.2	5
136	Creating Learning Opportunities for Teachers and Students: A Culturalâ€Historical Understanding of Classroom Research. Curriculum Inquiry, 2013, 43, 233-260.	0.8	5
137	The Social Nature of Representational Engineering Knowledge. , 2014, , 67-82.		5
138	The stakes of movement: A dynamic approach to mathematical thinking. Curriculum Inquiry, 2015, 45, 266-284.	0.8	5
139	Rigorous Data Analysis. , 2015, , .		5
140	Activity, Subjectification, and Personality: Science Education from a Diversity-of-Life Perspective. Cultural Studies of Science Education, 2013, , 41-64.	0.2	5
141	Reflections During the COVID-19 Pandemic: Science, Education, and Everyday Life. Canadian Journal of Science, Mathematics and Technology Education, 2022, 22, 250-258.	0.6	5
142	The interaction of learning environments and student discourse about knowing, learning, and the nature of science: Two longitudinal case studies. International Journal of Educational Research, 1997, 27, 311-320.	1.2	4
143	History and the relationship between scientific and pedagogical knowledge: anatomy lectures then and now. Journal of Curriculum Studies, 2014, 46, 180-200.	1.2	4
144	Concrete Human Psychology. , 0, , .		4

Concrete Human Psychology. , 0, , . 144

1

#	Article	IF	CITATIONS
145	ReUniting Sociological and Psychological Perspectives in/for Science Education An Introduction. Cultural Studies of Science Education, 2010, , 1-12.	0.2	4
146	Cultural–historical activity theory and pedagogy: an introduction. Pedagogies, 2009, 5, 1-5.	0.4	3
147	On understanding variability in data: a study of graph interpretation in an advanced experimental biology laboratory. Educational Studies in Mathematics, 2014, 86, 359-376.	1.8	3
148	Seeing design stances. CoDesign, 2016, 12, 6-25.	1.4	3
149	A cultural-historical perspective on the multimodal development of concepts in science lectures. Cultural Studies of Science Education, 2020, 15, 31-70.	0.9	3
150	Interdisciplinary Approaches in Mathematics Education. , 2014, , 317-320.		3
151	Confirmatory factor analysis for validity consideration: A critique. Science Education, 1989, 73, 649-655.	1.8	2
152	Activity Theory. , 2014, , 25-31.		2
153	On the societal nature of praxis and organic research. Cultural Studies of Science Education, 2016, 11, 105-125.	0.9	2
154	Cogenerative Dialogue for Collective Curriculum Leadership. , 2016, , 311-329.		2
155	From-Within-the-Event: A Post-constructivist Perspective on Activism, Ethics, and Science Education. Cultural Studies of Science Education, 2014, , 237-254.	0.2	2
156	Zone of Proximal Development in Mathematics Education. , 2014, , 647-650.		2
157	Socio-Cultural Perspectives on Learning Science. , 2015, , 985-996.		2
158	STEM and Affect in Adolescence: A Cultural-Historical Approach. , 2018, , 15-36.		2
159	Interdisciplinary Approaches in Mathematics Education. , 2020, , 415-419.		2
160	An anthropology of reading science texts in online media. Semiotica, 2010, 2010, .	0.2	1
161	On the hunt for elusive "meanings― Cultural Studies of Science Education, 2012, 7, 607-626.	0.9	1

¹⁶² Zone of Proximal Development in Mathematics Education. , 2020, , 913-916.

#	Article	IF	CITATIONS
163	The Heroes of Science. Cultural Studies of Science Education, 2013, , 3-25.	0.2	1
164	Socio-Cultural Perspectives on Learning Science. , 2014, , 1-12.		1
165	Activity Theory in Mathematics Education. , 2014, , 11-15.		1
166	Activity Theory in Mathematics Education. , 2020, , 20-23.		1
167	Evaluation of Science Teaching Performance through Coteaching and Cogenerative Dialoguing. , 2002, , 187-217.		1
168	Cautions about Inferences from International Assessments: The Case of PISA 2009. Teachers College Record, 2015, 117, 1-28.	0.4	1
169	Forum: Toward a non-reductionist perspective of thinking in science. Cultural Studies of Science Education, 2007, 1, 451-465.	0.9	0
170	Ecological mindfulness, spirituality, and life-long (hybrid, dialogical) learning: a tribute to Michiel van Eijck. Cultural Studies of Science Education, 2015, 10, 21-40.	0.9	0
171	"The Way to Freedom―in/for Education. Cultural Psychology of Education, 2017, , 297-319.	0.1	Ο
172	On the Irreducibility of Acting, Emoting, and Thinking. , 2017, , 409-431.		0
173	Activity Theory in Mathematics Education. , 2019, , 1-5.		Ο
174	Sociology Psychology … Toward a Science of Phenomena. Cultural Studies of Science Education, 2010, , 355-375.	0.2	0
175	Toward a Dynamic Theory of Graphing. , 2014, , 3-29.		0
176	Uncertainty, Inquiry, Bricolage. , 2014, , 365-395.		0
177	On Contradictions in Data Interpretation. , 2014, , 179-211.		0
178	Becoming and Belonging. , 2016, , 295-320.		0
179	Becoming and Belonging. , 2016, , 295-320.		0
180	STEPWISE: A Societal-Historical Activity (Activism) Theoretical Perspective. Cultural Studies of Science Education, 2017, , 639-656.	0.2	0

IF

#	Article	IF	Сітат
181	Interdisciplinary Approaches in Mathematics Education. , 2018, , 1-5.		0