Laipan Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1215546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Flexible Multifunctional Triboelectric Nanogenerator Based on MXene/PVA Hydrogel. Advanced Functional Materials, 2021, 31, 2104928.	7.8	259
2	Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy, 2018, 45, 380-389.	8.2	178
3	Flexoelectronics of centrosymmetric semiconductors. Nature Nanotechnology, 2020, 15, 661-667.	15.6	175
4	Piezoâ€Phototronic Effect for Enhanced Flexible MoS ₂ /WSe ₂ van der Waals Photodiodes. Advanced Functional Materials, 2018, 28, 1802849.	7.8	130
5	High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping. Nano Energy, 2019, 66, 104117.	8.2	127
6	Piezoâ€Phototronic Effect Enhanced Flexible Solar Cells Based on nâ€ZnO/pâ€&nS Core–Shell Nanowire Array. Advanced Science, 2017, 4, 1600185.	5.6	110
7	Comprehensive Pyroâ€Phototronic Effect Enhanced Ultraviolet Detector with ZnO/Ag Schottky Junction. Advanced Functional Materials, 2019, 29, 1807111.	7.8	95
8	Piezoelectric Nanogenerator Based on In Situ Growth Allâ€Inorganic CsPbBr ₃ Perovskite Nanocrystals in PVDF Fibers with Longâ€Term Stability. Advanced Functional Materials, 2021, 31, 2011073.	7.8	95
9	Scanning Probing of the Tribovoltaic Effect at the Sliding Interface of Two Semiconductors. Advanced Materials, 2020, 32, e2000928.	11.1	93
10	Electron Transfer in Nanoscale Contact Electrification: Photon Excitation Effect. Advanced Materials, 2019, 31, e1901418.	11.1	84
11	Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders. Nature Communications, 2022, 13, 130.	5.8	83
12	Harshâ€Environmentalâ€Resistant Triboelectric Nanogenerator and Its Applications in Autodrive Safety Warning. Advanced Energy Materials, 2018, 8, 1801898.	10.2	82
13	Enhancing the Efficiency of Silicon-Based Solar Cells by the Piezo-Phototronic Effect. ACS Nano, 2017, 11, 1894-1900.	7.3	79
14	Piezo-phototronic Effect Enhanced Photodetector Based on CH ₃ NH ₃ PbI ₃ Single Crystals. ACS Nano, 2018, 12, 10501-10508.	7.3	67
15	Ultrathin Piezotronic Transistors with 2 nm Channel Lengths. ACS Nano, 2018, 12, 4903-4908.	7.3	63
16	Piezotronic Effect on Rashba Spin–Orbit Coupling in a ZnO/P3HT Nanowire Array Structure. ACS Nano, 2018, 12, 1811-1820.	7.3	61
17	2D piezotronics in atomically thin zinc oxide sheets: Interfacing gating and channel width gating. Nano Energy, 2019, 60, 724-733.	8.2	60
18	Recent Progress in Piezoâ€Phototronic Effect Enhanced Solar Cells. Advanced Functional Materials, 2019, 29, 1808214.	7.8	57

Laipan Zhu

#	Article	IF	CITATIONS
19	Ultra-Stable and Durable Piezoelectric Nanogenerator with All-Weather Service Capability Based on NÂDoped 4H-SiC Nanohole Arrays. Nano-Micro Letters, 2022, 14, 30.	14.4	57
20	Piezoelectric nanogenerators with high performance against harsh conditions based on tunable N doped 4H-SiC nanowire arrays. Nano Energy, 2021, 83, 105826.	8.2	56
21	Tunable WSe ₂ –CdS mixed-dimensional van der Waals heterojunction with a piezo-phototronic effect for an enhanced flexible photodetector. Nanoscale, 2018, 10, 14472-14479.	2.8	53
22	Self-Powered High-Responsivity Photodetectors Enhanced by the Pyro-Phototronic Effect Based on a BaTiO ₃ /GaN Heterojunction. Nano Letters, 2021, 21, 8808-8816.	4.5	51
23	Ultrasensitive Vertical Piezotronic Transistor Based on ZnO Twin Nanoplatelet. ACS Nano, 2017, 11, 4859-4865.	7.3	45
24	Flexible Piezoelectric Nanogenerators Based on P(VDF-TrFE)/CsPbBr ₃ Quantum Dot Composite Films. ACS Applied Electronic Materials, 2021, 3, 2136-2144.	2.0	33
25	Observation of Unusual Optical Band Structure of CH ₃ NH ₃ PbI ₃ Perovskite Single Crystal. ACS Photonics, 2018, 5, 1583-1590.	3.2	32
26	Tribovoltaic Nanogenerators Based on MXene–Silicon Heterojunctions for Highly Stable Selfâ€Powered Speed, Displacement, Tension, Oscillation Angle, and Vibration Sensors. Advanced Functional Materials, 2022, 32, .	7.8	32
27	Piezo-phototronic effect enhanced polarization-sensitive photodetectors based on cation-mixed organic–inorganic perovskite nanowires. Materials Today, 2020, 37, 56-63.	8.3	28
28	Flexible Piezoelectric Nanogenerators Based on P(VDF–TrFE)/GeSe Nanocomposite Films. ACS Applied Electronic Materials, 2020, 2, 2369-2374.	2.0	25
29	Progress in Piezoelectric Nanogenerators Based on PVDF Composite Films. Micromachines, 2021, 12, 1278.	1.4	24
30	Effects of Temperature on the Tribovoltaic Effect at Liquidâ€Solid Interfaces. Advanced Materials Interfaces, 2022, 9, .	1.9	24
31	Progress in piezotronics and piezo-phototronics of quantum materials. Journal Physics D: Applied Physics, 2019, 52, 343001.	1.3	23
32	Piezo-phototronic and pyro-phototronic effects to enhance Cu(In, Ga)Se2 thin film solar cells. Nano Research, 2018, 11, 3877-3885.	5.8	22
33	Highly Sensitive Photoelectric Detection and Imaging Enhanced by the Pyroâ€Phototronic Effect Based on a Photoinduced Dynamic Schottky Effect in 4H‧iC. Advanced Materials, 2022, 34, .	11.1	21
34	Defect repair for enhanced piezo-phototronic MoS ₂ flexible phototransistors. Journal of Materials Chemistry C, 2019, 7, 14731-14738.	2.7	20
35	Evaluation of DLC, MoS2, and Ti3C2T thin films for triboelectric nanogenerators. Nano Energy, 2022, 97, 107185.	8.2	20
36	Enhanced Spin–Orbit Coupled Photoluminescence of Perovskite CsPbBr ₃ Quantum Dots by Piezo-Phototronic Effect. Nano Letters, 2020, 20, 8298-8304.	4.5	19

Laipan Zhu

#	Article	IF	CITATIONS
37	Optical bandgap energy of CH3NH3PbI3 perovskite studied by photoconductivity and reflectance spectroscopy. Science China Technological Sciences, 2018, 61, 886-892.	2.0	17
38	Enhanced Flexible Poly(vinylidene fluoride-trifluorethylene) Piezoelectric Nanogenerators by SnSe Nanosheet Doping and Solvent Treatment. ACS Applied Materials & Interfaces, 2021, 13, 32278-32285.	4.0	16
39	Flexible Difunctional (Pressure and Light) Sensors Based on ZnO Nanowires/Graphene Heterostructures. Advanced Materials Interfaces, 2020, 7, 1901932.	1.9	16
40	Triboelectric Leakage-Field-Induced Electroluminescence Based on ZnS:Cu. ACS Applied Materials & Interfaces, 2022, 14, 4775-4782.	4.0	15
41	Spin transport in undoped InGaAs/AlGaAs multiple quantum well studied via spin photocurrent excited by circularly polarized light. Nanoscale Research Letters, 2016, 11, 8.	3.1	14
42	Flexible and wearable piezoelectric nanogenerators based on P(VDF-TrFE)/SnS nanocomposite micropillar array. Journal of Applied Physics, 2021, 129, .	1.1	14
43	Angular Dependence of the Spin Photocurrent in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>Co</mml:mi><mml:mtext>â^3</mml:mtext><mml:mi>Fe</mml:mi><mm mathvariant="normal">B<mml:mo>/</mml:mo><mml:mi>MgO</mml:mi><mml:mo>/<td>hl:mtøxt>â´ nl:mi>n<td>``<!--<b-->raml:mtex nml:mi><mm< td=""></mm<></td></td></mml:mo></mm </mml:mrow></mml:math 	hl:m tø xt>â´ nl:mi>n <td>``<!--<b-->raml:mtex nml:mi><mm< td=""></mm<></td>	`` <b raml:mtex nml:mi> <mm< td=""></mm<>
44	Spin depolarization under low electric fields at low temperatures in undoped InGaAs/AlGaAs multiple quantum well. Applied Physics Letters, 2014, 105, 152103.	1.5	11
45	Temperature dependence of spin photocurrent spectra induced by Rashba- and Dresselhaus-type circular photogalvanic effect at inter-band excitation in InGaAs/AlGaAs quantum wells. Optics Express, 2015, 23, 27250.	1.7	11
46	Identifying different mechanisms of circular photogalvanic effect in GaAs/Al0.3Ga0.7As two dimensional electron gas by photo-modulation technique. Applied Physics Letters, 2013, 102, .	1.5	8
47	Piezotronic effect on Rashba spin–orbit coupling based on MAPbI3/ZnO heterostructures. Applied Physics Letters, 2020, 117, 071601.	1.5	7
48	Reflectance difference spectroscopy microscope for circular defects on InN films. Optics Express, 2016, 24, 15059.	1.7	6
49	Observation of interface dependent spin polarized photocurrents in InAs/GaSb superlattice. Applied Physics Letters, 2015, 106, 192402.	1.5	5
50	Observation of linear and quadratic magnetic field-dependence of magneto-photocurrents in InAs/GaSb superlattice. Nanoscale Research Letters, 2014, 9, 279.	3.1	4
51	New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. Journal of Semiconductors, 2016, 37, 013002.	2.0	3
52	Polarization-Sensitive Light Sensors Based on a Bulk Perovskite MAPbBr3 Single Crystal. Materials, 2021, 14, 1238.	1.3	3
53	Comparison of spin photocurrent in devices based on in-plane or out-of-plane magnetized CoFeB spin detectors. Physical Review B, 2019, 100, .	1.1	2
54	Observation of anomalous linear photogalvanic effect and its dependence on wavelength in undoped InGaAs/AlGaAs multiple quantum well. Nanoscale Research Letters, 2014, 9, 493.	3.1	1

#	Article	IF	CITATIONS
55	Giant in-plane optical anisotropy of <i>a</i> -plane ZnO on <i>r</i> -plane sapphire. Journal of Semiconductors, 2013, 34, 122003.	2.0	0