List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12152188/publications.pdf Version: 2024-02-01

SELINCUN KIM

#	Article	IF	CITATIONS
1	Modeling of bubble coalescence and disintegration in confined upward two-phase flow. Nuclear Engineering and Design, 2004, 230, 3-26.	0.8	144
2	Characteristics of Secondary Flow Induced by 90-Degree Elbow in Turbulent Pipe Flow. Engineering Applications of Computational Fluid Mechanics, 2014, 8, 229-239.	1.5	90
3	Model evaluation of two-group interfacial area transport equation for confined upward flow. Nuclear Engineering and Design, 2004, 230, 27-47.	0.8	78
4	Drift-flux model for downward two-phase flow. International Journal of Heat and Mass Transfer, 2003, 46, 4835-4844.	2.5	76
5	Characterization of horizontal air–water two-phase flow. Nuclear Engineering and Design, 2017, 312, 266-276.	0.8	62
6	Structure of vertical downward bubbly flow. International Journal of Heat and Mass Transfer, 2004, 47, 1847-1862.	2.5	60
7	Characterization of horizontal air–water two-phase flow in a round pipe part I: Flow visualization. International Journal of Multiphase Flow, 2015, 76, 212-222.	1.6	53
8	Effects of pipe size on horizontal two-phase flow: Flow regimes, pressure drop, two-phase flow parameters, and drift-flux analysis. Experimental Thermal and Fluid Science, 2018, 96, 75-89.	1.5	53
9	Interfacial area transport and evaluation of source and sink terms for confined air–water bubbly flow. Nuclear Engineering and Design, 2003, 219, 61-75.	0.8	48
10	Interfacial area of bubbly flow in a relatively large diameter pipe. Experimental Thermal and Fluid Science, 2002, 27, 97-109.	1.5	43
11	Characterization of horizontal air–water two-phase flow in a round pipe part II: Measurement of local two-phase parameters in bubbly flow. International Journal of Multiphase Flow, 2015, 76, 223-236.	1.6	43
12	Sensitivity studies on the multi-sensor conductivity probe measurement technique for two-phase flows. Nuclear Engineering and Design, 2016, 310, 552-563.	0.8	39
13	Experimental study of horizontal air-water plug-to-slug transition flow in different pipe sizes. International Journal of Heat and Mass Transfer, 2018, 123, 1005-1020.	2.5	39
14	Geometric effects of 90-degree Elbow in the development of interfacial structures in horizontal bubbly flow. Nuclear Engineering and Design, 2007, 237, 2105-2113.	0.8	37
15	Frictional pressure drop analysis for horizontal and vertical air-water two-phase flows in different pipe sizes. Nuclear Engineering and Design, 2018, 332, 147-161.	0.8	37
16	Liquid velocity in upward and downward air–water flows. Annals of Nuclear Energy, 2004, 31, 357-373.	0.9	32
17	Experimental investigation of horizontal air–water bubbly-to-plug and bubbly-to-slug transition flows in a 3.81 cm ID pipe. International Journal of Multiphase Flow, 2017, 94, 137-155.	1.6	31
18	Two-phase minor loss in horizontal bubbly flow with elbows: 45° and 90° elbows. Nuclear Engineering and Design, 2010, 240, 284-289.	0.8	27

#	Article	IF	CITATIONS
19	Inlet effects on vertical-downward air–water two-phase flow. Nuclear Engineering and Design, 2017, 312, 375-388.	0.8	26
20	Experiments on geometric effects of 90-degree vertical-upward elbow in air water two-phase flow. International Journal of Multiphase Flow, 2014, 65, 98-107.	1.6	25
21	Implementation and evaluation of one-group interfacial area transport equation in TRACE. Nuclear Engineering and Design, 2011, 241, 865-873.	0.8	23
22	Air-water two-phase bubbly flow across 90° vertical elbows. Part I: Experiment. International Journal of Heat and Mass Transfer, 2018, 123, 1221-1237.	2.5	20
23	Interfacial structures in confined cap-turbulent and churn-turbulent flows. International Journal of Heat and Fluid Flow, 2004, 25, 44-57.	1.1	19
24	Axial development of interfacial structure of vertical downward bubbly flow. International Journal of Heat and Mass Transfer, 2005, 48, 749-764.	2.5	19
25	Interfacial Area Transport Equation and Implementation Into Two-Fluid Model. Journal of Thermal Science and Engineering Applications, 2009, 1, .	0.8	18
26	Experimental study of interfacial structure of horizontal air-water two-phase flow in a 101.6â€⁻mm ID pipe. Experimental Thermal and Fluid Science, 2018, 93, 57-72.	1.5	18
27	Modeling strategy of the source and sink terms in the two-group interfacial area transport equation. Annals of Nuclear Energy, 2003, 30, 1309-1331.	0.9	17
28	Air-water two-phase bubbly flow across 90° vertical elbows Part II: Modeling. International Journal of Heat and Mass Transfer, 2018, 123, 1238-1252.	2.5	17
29	Progress in two-phase flow modeling: Interfacial area transport. Nuclear Engineering and Design, 2021, 373, 111019.	0.8	17
30	Interfacial area transport across a 90° vertical-upward elbow in air–water bubbly two-phase flow. International Journal of Multiphase Flow, 2016, 85, 110-122.	1.6	16
31	Characterization of the dissipation of elbow effects in bubbly two-phase flows. International Journal of Multiphase Flow, 2014, 66, 101-109.	1.6	14
32	Void fraction prediction and one-dimensional drift-flux analysis for horizontal two-phase flow in different pipe sizes. Experimental Thermal and Fluid Science, 2018, 99, 433-445.	1.5	14
33	A robust image analysis technique for the study of horizontal air-water plug flow. Experimental Thermal and Fluid Science, 2019, 102, 245-260.	1.5	13
34	Effect of bubble interactions on the prediction of interfacial area in TRACE. Nuclear Engineering and Design, 2013, 264, 135-145.	0.8	12
35	Geometric Effects of 45-deg Elbow in Horizontal Air-Water Bubbly Flow. Nuclear Technology, 2009, 167, 2-12.	0.7	11
36	Experiments in Cap-Bubbly Two-Phase Flows for Two-Group IATE Development. Nuclear Technology, 2015, 190, 264-273.	0.7	11

#	Article	IF	CITATIONS
37	On the prediction of two-phase pressure drop across 90° vertical elbows. International Journal of Multiphase Flow, 2018, 109, 242-258.	1.6	11
38	Interfacial area transport models for horizontal air-water bubbly flow in different pipe sizes. International Journal of Multiphase Flow, 2018, 106, 46-59.	1.6	9
39	Horizontal bubbly flow with elbow restrictions: Interfacial area transport modeling. Nuclear Engineering and Design, 2010, 240, 1111-1120.	0.8	6
40	Experiments on the Effects of a Spacer Grid in Air-Water Two-Phase Flow. Nuclear Technology, 2015, 190, 215-224.	0.7	6
41	Interfacial Area Transport in Horizontal Bubbly Flow with 90-deg Elbow. Nuclear Technology, 2009, 167, 20-28.	0.7	5
42	Comparison of Local Interfacial Structures Around 90 and 45-Degree Elbows in Horizontal Bubbly Flows. Journal of Fluids Engineering, Transactions of the ASME, 2010, 132, .	0.8	5
43	Review of jet impingement in high-energy piping systems. Nuclear Engineering and Design, 2020, 357, 110411.	0.8	5
44	Experimental Investigation on the Effects of a Spacer Grid on Single- and Two-Phase Flows. International Journal of Nuclear Energy Science and Engineering, 2014, 4, 50.	0.5	5
45	Experiments and CFD simulations of the LBE loop in HYST: A new concept for irradiation experiments in a fast-reactor-like environment. Nuclear Engineering and Design, 2022, 392, 111774.	0.8	5
46	Effects of 90-deg Vertical Elbows on the Distribution of Local Two-Phase Flow Parameters. Nuclear Technology, 2013, 181, 94-105.	0.7	4
47	Considerations in the Practical Application of the Multisensor Conductivity Probe for Two-Phase Flow. Nuclear Technology, 2015, 190, 225-235.	0.7	3
48	Separate-effect experiments and modeling for two-phase flow under geometric restrictions. Nuclear Engineering and Design, 2020, 367, 110786.	0.8	2
49	Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow. , 2002, , .		2
50	ICONE11-36115 DEVELOPMENT OF TWO-GROUP INTERFACIAL AREA TRANSPORT EQUATION FOR CONFINED FLOW-II : MODEL EVALUATION. The Proceedings of the International Conference on Nuclear Engineering (ICONE), 2003, 2003, 238.	0.0	2
51	Local Liquid Velocity in Vertical Air-Water Bubbly Downward Flow. , 2003, , 1673.		1
52	ICONE11-36015 ONE-DIMENSIONAL DRIFT-FLUX MODEL FOR DOWNWARD TWO-PHASE FLOW. The Proceedings of the International Conference on Nuclear Engineering (ICONE), 2003, 2003, 214.	0.0	1
53	ICONE11-36114 DEVELOPMENT OF TWO-GROUP INTERFACIAL AREA TRANSPORT EQUATION FOR CONFINED FLOW-I : MODELING OF BUBBLE INTERACTIONS. The Proceedings of the International Conference on Nuclear Engineering (ICONE), 2003, 2003, 237.	0.0	1
54	Jet impingement in high-energy piping systems, part I: Characteristics and model evaluation. Progress in Nuclear Energy, 2021, 142, 104002.	1.3	1

#	Article	IF	CITATIONS
55	Pressure Drop in Seven-Pin Wire-Wrapped Rod Bundle for the Sodium Cartridge Loop in Versatile Test Reactor. Nuclear Science and Engineering, 0, , 1-17.	0.5	1
56	Assessment of the CUPID Code for Bubbly Flows in Horizontal Pipes. Nuclear Technology, 2018, 204, 330-342.	0.7	0
57	Jet impingement in high-energy piping systems, part II: Model improvement and guidance development. Progress in Nuclear Energy, 2021, 142, 104001.	1.3	0
58	ICONE11-36263 INTERFACIAL STRUCTURES IN DOWNWARD TWO-PHASE BUBBLY FLOW. The Proceedings of the International Conference on Nuclear Engineering (ICONE), 2003, 2003, 271.	0.0	0