
## John W Fleeger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12151210/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Macroinfaunal Ecosystem Engineer May Facilitate Recovery of Benthic Invertebrates and Accompanying Ecosystem Services After an Oil Spill. Estuaries and Coasts, 2022, 45, 582-591.                         | 2.2  | 6         |
| 2  | Metaâ€analysis of salt marsh vegetation impacts and recovery: a synthesis following the <i>Deepwater<br/>Horizon</i> oil spill. Ecological Applications, 2022, 32, e02489.                                   | 3.8  | 18        |
| 3  | How Do Indirect Effects of Contaminants Inform Ecotoxicology? A Review. Processes, 2020, 8, 1659.                                                                                                            | 2.8  | 17        |
| 4  | Legacy effects of Hurricane Katrina influenced marsh shoreline erosion following the Deepwater<br>Horizon oil spill. Science of the Total Environment, 2019, 672, 456-467.                                   | 8.0  | 15        |
| 5  | Saltmarsh plants, but not fertilizer, facilitate invertebrate recolonization after an oil spill.<br>Ecosphere, 2018, 9, e02082.                                                                              | 2.2  | 10        |
| 6  | Shoreline oiling effects and recovery of salt marsh macroinvertebrates from the <i>Deepwater Horizon</i> Oil Spill. PeerJ, 2017, 5, e3680.                                                                   | 2.0  | 18        |
| 7  | Response of salt marshes to oiling from the Deepwater Horizon spill: Implications for plant growth, soil surface-erosion, and shoreline stability. Science of the Total Environment, 2016, 557-558, 369-377. | 8.0  | 80        |
| 8  | A test of biological trait analysis with nematodes and an anthropogenic stressor. Environmental<br>Monitoring and Assessment, 2016, 188, 140.                                                                | 2.7  | 7         |
| 9  | Longâ€ŧerm nutrient enrichment alters nematode trophic structure and body size in a S partina<br>alterniflora salt marsh. Marine Ecology, 2015, 36, 910-925.                                                 | 1.1  | 5         |
| 10 | Assessing Biological Effects. SERDP and ESTCP Remediation Technology Monograph Series, 2014, ,<br>131-175.                                                                                                   | 0.3  | 3         |
| 11 | Diverse Dietary Responses by Saltmarsh Consumers to Chronic Nutrient Enrichment. Estuaries and Coasts, 2013, 36, 1115-1124.                                                                                  | 2.2  | 14        |
| 12 | Long-term nutrient enrichment elicits a weak density response by saltmarsh meiofauna. Hydrobiologia,<br>2013, 713, 97-114.                                                                                   | 2.0  | 12        |
| 13 | Coastal eutrophication as a driver of salt marsh loss. Nature, 2012, 490, 388-392.                                                                                                                           | 27.8 | 814       |
| 14 | Oil Impacts on Coastal Wetlands: Implications for the Mississippi River Delta Ecosystem after the<br>Deepwater Horizon Oil Spill. BioScience, 2012, 62, 562-574.                                             | 4.9  | 257       |
| 15 | Natural abundance stable isotopes and dual isotope tracer additions help to resolve resources supporting a saltmarsh food web. Journal of Experimental Marine Biology and Ecology, 2011, 410, 1-11.          | 1.5  | 39        |
| 16 | The toxicological interaction between ocean acidity and metals in coastal meiobenthic copepods.<br>Marine Pollution Bulletin, 2010, 60, 2201-2208.                                                           | 5.0  | 95        |
| 17 | Genetic Diversity in a Deep-Sea Harpacticoid Copepod Found Near Two Oil-Drilling Sites in the Gulf of<br>Mexico. Journal of Crustacean Biology, 2010, 30, 651-657.                                           | 0.8  | 6         |
| 18 | Weak response of saltmarsh infauna to ecosystem-wide nutrient enrichment and fish predator<br>reduction: A four-year study. Journal of Experimental Marine Biology and Ecology, 2009, 373, 35-44.            | 1.5  | 26        |

John W Fleeger

| #  | Article                                                                                                                                                                                                                                                    | IF               | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 19 | EFFECTS OF DIESEL AND INTERACTIONS WITH COPPER AND OTHER METALS IN AN ESTUARINE SEDIMENT MICROBIAL COMMUNITY. Environmental Toxicology and Chemistry, 2009, 28, 2289.                                                                                      | 4.3              | 2            |
| 20 | SUSCEPTIBILITY OF SALT MARSHES TO NUTRIENT ENRICHMENT AND PREDATOR REMOVAL. Ecological Applications, 2007, 17, S42.                                                                                                                                        | 3.8              | 117          |
| 21 | Mixtures of metals and polynuclear aromatic hydrocarbons elicit complex, nonadditive toxicological interactions in meiobenthic copepods. Environmental Toxicology and Chemistry, 2007, 26, 1677-1685.                                                      | 4.3              | 43           |
| 22 | The grazing effects of grass shrimp,Palaemonetes pugio, on epiphytic microalgae associated withSpartina alterniflora. Estuaries and Coasts, 2005, 28, 274-285.                                                                                             | 1.7              | 21           |
| 23 | Four new species ofCletocamptusSchmankewitsch, 1875, closely related toCletocamptus<br>deitersi(Richard, 1897) (Copepoda: Harpacticoida). Journal of Natural History, 2004, 38, 2669-2732.                                                                 | 0.5              | 35           |
| 24 | Mixtures of metals and hydrocarbons elicit complex responses by a benthic invertebrate community.<br>Journal of Experimental Marine Biology and Ecology, 2004, 310, 115-130.                                                                               | 1.5              | 57           |
| 25 | DIFFERENTIAL TOLERANCE AMONG CRYPTIC SPECIES: A POTENTIAL CAUSE OF POLLUTANT-RELATED REDUCTIONS IN GENETIC DIVERSITY. Environmental Toxicology and Chemistry, 2004, 23, 2132.                                                                              | 4.3              | 37           |
| 26 | Influence of Introduced CO2 on Deep-Sea Metazoan Meiofauna. Journal of Oceanography, 2004, 60,<br>767-772.                                                                                                                                                 | 1.7              | 39           |
| 27 | Stable isotope indicators of movement and residency for brown shrimp (Farfantepenaeus aztecus) in<br>coastal Louisiana marshscapes. Estuaries and Coasts, 2003, 26, 82-97.                                                                                 | 1.7              | 132          |
| 28 | Abundance and colonization potential of artificial hard substrate-associated meiofauna. Journal of<br>Experimental Marine Biology and Ecology, 2003, 287, 273-287.                                                                                         | 1.5              | 38           |
| 29 | Indirect effects of contaminants in aquatic ecosystems. Science of the Total Environment, 2003, 317, 207-233.                                                                                                                                              | 8.0              | 766          |
| 30 | Pyrene bioaccumulation, effects of pyrene exposure on particleâ€size selection, and fecal pyrene<br>content in the oligochaete <i>Limnodrilus hoffmeisteri</i> (Tubificidae, Oligochaeta). Environmental<br>Toxicology and Chemistry, 2001, 20, 1359-1366. | 4.3              | 32           |
| 31 | Linking ecological impact to metal concentrations and speciation: A microcosm experiment using a salt marsh meiofaunal community. Environmental Toxicology and Chemistry, 2001, 20, 2029-2037.                                                             | 4.3              | 34           |
| 32 | Decoupling of Molecular and Morphological Evolution in Deep Lineages of a Meiobenthic<br>Harpacticoid Copepod. Molecular Biology and Evolution, 2001, 18, 1088-1102.                                                                                       | 8.9              | 154          |
| 33 | Food, density, and microhabitat: factors affecting growth and recruitment potential of juvenile saltmarsh fishes. Environmental Biology of Fishes, 1998, 53, 89-103.                                                                                       | 1.0              | 91           |
| 34 | Response of a benthic food web to hydrocarbon contamination. Limnology and Oceanography, 1997,<br>42, 561-571.                                                                                                                                             | 3.1              | 112          |
| 35 | Importance of emerged and suspended meiofauna to the diet of the darter goby (Gobionellus) Tj ETQq1 1 0.78                                                                                                                                                 | 4314 rgBT<br>1.5 | /Overlock 10 |
| 36 | Toxicity of sedimentâ€associated pyrene and phenanthrene to <i>Limnodrilus hoffmeisteri</i>                                                                                                                                                                | 4.3              | 47           |

(oligochaeta: Tubificidae). Environmental Toxicology and Chemistry, 1996, 15, 1508-1516.

JOHN W FLEEGER

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Experimental investigation of the effects of polynuclear aromatic hydrocarbons on an estuarine sediment food web. Marine Environmental Research, 1995, 40, 289-318.                                    | 2.5 | 78        |
| 38 | Sustained mass culture of Amphiascoides atopus a marine harpacticoid copepod in a recirculating system. Aquaculture, 1995, 136, 313-321.                                                               | 3.5 | 83        |
| 39 | Microhabitat use by marsh-edge fishes in a Louisiana estuary. Environmental Biology of Fishes, 1993, 36,<br>109-126.                                                                                   | 1.0 | 213       |
| 40 | Abundance and Seasonality of Meiofauna, Including Harpacticoid Copepod Species, Associated with Stems of the Salt-Marsh Cord Grass, Spartina alterniflora. Estuaries and Coasts, 1993, 16, 760.        | 1.7 | 41        |
| 41 | Sediment microtopography and the small-scale spatial distribution of meiofauna. Journal of Experimental Marine Biology and Ecology, 1993, 167, 73-90.                                                  | 1.5 | 32        |
| 42 | Microscale dispersion of meiobenthic copepods in response to food-resource patchiness. Journal of Experimental Marine Biology and Ecology, 1988, 118, 229-243.                                         | 1.5 | 76        |
| 43 | Facilitative and Inhibitory Interactions Among Estuarine Meiobenthic Harpacticoid Copepods. Ecology, 1987, 68, 1906-1919.                                                                              | 3.2 | 37        |
| 44 | The effect of crude oil on the colonization of meiofauna into salt marsh sediments. Hydrobiologia, 1984, 118, 49-58.                                                                                   | 2.0 | 25        |
| 45 | Meiofaunal colonization of azoic estuarine sediment in Louisiana: Mechanisms of dispersal. Journal of<br>Experimental Marine Biology and Ecology, 1983, 69, 175-188.                                   | 1.5 | 129       |
| 46 | Morphological Variation in Cletocamptus (Copepoda: Harpacticoida), with Description of a New<br>Species from Louisiana Salt Marshes. Transactions of the American Microscopical Society, 1980, 99, 25. | 0.3 | 16        |
| 47 | The Potential to Mass-Culture Harpacticoid Copepods for Use as Food for Larval Fish. , 0, , 11-24.                                                                                                     |     | 16        |