John W Fleeger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12151210/publications.pdf Version: 2024-02-01

IOHN W FLEECER

#	Article	IF	CITATIONS
1	Coastal eutrophication as a driver of salt marsh loss. Nature, 2012, 490, 388-392.	27.8	814
2	Indirect effects of contaminants in aquatic ecosystems. Science of the Total Environment, 2003, 317, 207-233.	8.0	766
3	Oil Impacts on Coastal Wetlands: Implications for the Mississippi River Delta Ecosystem after the Deepwater Horizon Oil Spill. BioScience, 2012, 62, 562-574.	4.9	257
4	Microhabitat use by marsh-edge fishes in a Louisiana estuary. Environmental Biology of Fishes, 1993, 36, 109-126.	1.0	213
5	Decoupling of Molecular and Morphological Evolution in Deep Lineages of a Meiobenthic Harpacticoid Copepod. Molecular Biology and Evolution, 2001, 18, 1088-1102.	8.9	154
6	Stable isotope indicators of movement and residency for brown shrimp (Farfantepenaeus aztecus) in coastal Louisiana marshscapes. Estuaries and Coasts, 2003, 26, 82-97.	1.7	132
7	Meiofaunal colonization of azoic estuarine sediment in Louisiana: Mechanisms of dispersal. Journal of Experimental Marine Biology and Ecology, 1983, 69, 175-188.	1.5	129
8	SUSCEPTIBILITY OF SALT MARSHES TO NUTRIENT ENRICHMENT AND PREDATOR REMOVAL. Ecological Applications, 2007, 17, S42.	3.8	117
9	Response of a benthic food web to hydrocarbon contamination. Limnology and Oceanography, 1997, 42, 561-571.	3.1	112
10	The toxicological interaction between ocean acidity and metals in coastal meiobenthic copepods. Marine Pollution Bulletin, 2010, 60, 2201-2208.	5.0	95
11	Food, density, and microhabitat: factors affecting growth and recruitment potential of juvenile saltmarsh fishes. Environmental Biology of Fishes, 1998, 53, 89-103.	1.0	91
12	Sustained mass culture of Amphiascoides atopus a marine harpacticoid copepod in a recirculating system. Aquaculture, 1995, 136, 313-321.	3.5	83
13	Response of salt marshes to oiling from the Deepwater Horizon spill: Implications for plant growth, soil surface-erosion, and shoreline stability. Science of the Total Environment, 2016, 557-558, 369-377.	8.0	80
14	Experimental investigation of the effects of polynuclear aromatic hydrocarbons on an estuarine sediment food web. Marine Environmental Research, 1995, 40, 289-318.	2.5	78
15	Microscale dispersion of meiobenthic copepods in response to food-resource patchiness. Journal of Experimental Marine Biology and Ecology, 1988, 118, 229-243.	1.5	76
16	Mixtures of metals and hydrocarbons elicit complex responses by a benthic invertebrate community. Journal of Experimental Marine Biology and Ecology, 2004, 310, 115-130.	1.5	57
17	Toxicity of sedimentâ€associated pyrene and phenanthrene to <i>Limnodrilus hoffmeisteri</i> (oligochaeta: Tubificidae). Environmental Toxicology and Chemistry, 1996, 15, 1508-1516.	4.3	47
18	Mixtures of metals and polynuclear aromatic hydrocarbons elicit complex, nonadditive toxicological interactions in meiobenthic copepods. Environmental Toxicology and Chemistry, 2007, 26, 1677-1685.	4.3	43

John W Fleeger

#	Article	IF	CITATIONS
19	Abundance and Seasonality of Meiofauna, Including Harpacticoid Copepod Species, Associated with Stems of the Salt-Marsh Cord Grass, Spartina alterniflora. Estuaries and Coasts, 1993, 16, 760.	1.7	41
20	Influence of Introduced CO2 on Deep-Sea Metazoan Meiofauna. Journal of Oceanography, 2004, 60, 767-772.	1.7	39
21	Natural abundance stable isotopes and dual isotope tracer additions help to resolve resources supporting a saltmarsh food web. Journal of Experimental Marine Biology and Ecology, 2011, 410, 1-11.	1.5	39
22	Abundance and colonization potential of artificial hard substrate-associated meiofauna. Journal of Experimental Marine Biology and Ecology, 2003, 287, 273-287.	1.5	38
23	Facilitative and Inhibitory Interactions Among Estuarine Meiobenthic Harpacticoid Copepods. Ecology, 1987, 68, 1906-1919.	3.2	37
24	DIFFERENTIAL TOLERANCE AMONG CRYPTIC SPECIES: A POTENTIAL CAUSE OF POLLUTANT-RELATED REDUCTIONS IN GENETIC DIVERSITY. Environmental Toxicology and Chemistry, 2004, 23, 2132.	4.3	37
25	Four new species ofCletocamptusSchmankewitsch, 1875, closely related toCletocamptus deitersi(Richard, 1897) (Copepoda: Harpacticoida). Journal of Natural History, 2004, 38, 2669-2732.	0.5	35
26	Linking ecological impact to metal concentrations and speciation: A microcosm experiment using a salt marsh meiofaunal community. Environmental Toxicology and Chemistry, 2001, 20, 2029-2037.	4.3	34
27	Sediment microtopography and the small-scale spatial distribution of meiofauna. Journal of Experimental Marine Biology and Ecology, 1993, 167, 73-90.	1.5	32
28	Pyrene bioaccumulation, effects of pyrene exposure on particleâ€size selection, and fecal pyrene content in the oligochaete <i>Limnodrilus hoffmeisteri</i> (Tubificidae, Oligochaeta). Environmental Toxicology and Chemistry, 2001, 20, 1359-1366.	4.3	32
29	Weak response of saltmarsh infauna to ecosystem-wide nutrient enrichment and fish predator reduction: A four-year study. Journal of Experimental Marine Biology and Ecology, 2009, 373, 35-44.	1.5	26
30	The effect of crude oil on the colonization of meiofauna into salt marsh sediments. Hydrobiologia, 1984, 118, 49-58.	2.0	25
31	Importance of emerged and suspended meiofauna to the diet of the darter goby (Gobionellus) Tj ETQq1 1 0.784	314 rgBT / 1.5	Overlock 10
32	The grazing effects of grass shrimp,Palaemonetes pugio, on epiphytic microalgae associated withSpartina alterniflora. Estuaries and Coasts, 2005, 28, 274-285.	1.7	21
33	Shoreline oiling effects and recovery of salt marsh macroinvertebrates from the <i>Deepwater Horizon</i> Oil Spill. PeerJ, 2017, 5, e3680.	2.0	18
34	Metaâ€analysis of salt marsh vegetation impacts and recovery: a synthesis following the <i>Deepwater Horizon</i> oil spill. Ecological Applications, 2022, 32, e02489.	3.8	18
35	How Do Indirect Effects of Contaminants Inform Ecotoxicology? A Review. Processes, 2020, 8, 1659.	2.8	17
36	Morphological Variation in Cletocamptus (Copepoda: Harpacticoida), with Description of a New Species from Louisiana Salt Marshes, Transactions of the American Microscopical Society, 1980, 99, 25	0.3	16

John W Fleeger

#	Article	IF	CITATIONS
37	The Potential to Mass-Culture Harpacticoid Copepods for Use as Food for Larval Fish. , 0, , 11-24.		16
38	Legacy effects of Hurricane Katrina influenced marsh shoreline erosion following the Deepwater Horizon oil spill. Science of the Total Environment, 2019, 672, 456-467.	8.0	15
39	Diverse Dietary Responses by Saltmarsh Consumers to Chronic Nutrient Enrichment. Estuaries and Coasts, 2013, 36, 1115-1124.	2.2	14
40	Long-term nutrient enrichment elicits a weak density response by saltmarsh meiofauna. Hydrobiologia, 2013, 713, 97-114.	2.0	12
41	Saltmarsh plants, but not fertilizer, facilitate invertebrate recolonization after an oil spill. Ecosphere, 2018, 9, e02082.	2.2	10
42	A test of biological trait analysis with nematodes and an anthropogenic stressor. Environmental Monitoring and Assessment, 2016, 188, 140.	2.7	7
43	Genetic Diversity in a Deep-Sea Harpacticoid Copepod Found Near Two Oil-Drilling Sites in the Gulf of Mexico. Journal of Crustacean Biology, 2010, 30, 651-657.	0.8	6
44	A Macroinfaunal Ecosystem Engineer May Facilitate Recovery of Benthic Invertebrates and Accompanying Ecosystem Services After an Oil Spill. Estuaries and Coasts, 2022, 45, 582-591.	2.2	6
45	Longâ€ŧerm nutrient enrichment alters nematode trophic structure and body size in a S partina alterniflora salt marsh. Marine Ecology, 2015, 36, 910-925.	1.1	5
46	Assessing Biological Effects. SERDP and ESTCP Remediation Technology Monograph Series, 2014, , 131-175.	0.3	3
47	EFFECTS OF DIESEL AND INTERACTIONS WITH COPPER AND OTHER METALS IN AN ESTUARINE SEDIMENT MICROBIAL COMMUNITY. Environmental Toxicology and Chemistry, 2009, 28, 2289.	4.3	2