Luis Sanchez-Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12150816/publications.pdf Version: 2024-02-01

LUIS SANCHEZ-DEDEZ

#	Article	IF	CITATIONS
1	Oncolytic virus–mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Science Translational Medicine, 2022, 14, eabn2231.	5.8	70
2	4-1BB Agonism Averts TIL Exhaustion and Licenses PD-1 Blockade in Glioblastoma and Other Intracranial Cancers. Clinical Cancer Research, 2020, 26, 1349-1358.	3.2	34
3	Targeting PD-L1 Initiates Effective Antitumor Immunity in a Murine Model of Cushing Disease. Clinical Cancer Research, 2020, 26, 1141-1151.	3.2	43
4	CAR T cells and checkpoint inhibition for the treatment of glioblastoma. Expert Opinion on Biological Therapy, 2020, 20, 579-591.	1.4	37
5	First in human dose calculation of a single-chain bispecific antibody targeting glioma using the MABEL approach. , 2020, 8, e000213.		21
6	Rescuing imperfect antigens for immuno-oncology. Nature Biotechnology, 2019, 37, 1002-1003.	9.4	2
7	Pharmacokinetic Analysis of a Novel Human EGFRvIII:CD3 Bispecific Antibody in Plasma and Whole Blood Using a High-Resolution Targeted Mass Spectrometry Approach. Journal of Proteome Research, 2019, 18, 3032-3041.	1.8	14
8	Brain Tumor Microenvironment and Host State: Implications for Immunotherapy. Clinical Cancer Research, 2019, 25, 4202-4210.	3.2	207
9	EXTH-09. FIRST-IN-HUMAN DOSING CONSIDERATIONS OF A BISPECIFIC ANTIBODY FOR TREATING GLIOBLASTOMA. Neuro-Oncology, 2019, 21, vi84-vi84.	0.6	0
10	Preventing Lck Activation in CAR T Cells Confers Treg Resistance but Requires 4-1BB Signaling for Them to Persist and Treat Solid Tumors in Nonlymphodepleted Hosts. Clinical Cancer Research, 2019, 25, 358-368.	3.2	51
11	Safety of nivolumab in combination with dendritic cell vaccines in recurrent high-grade glioma Journal of Clinical Oncology, 2019, 37, e13526-e13526.	0.8	8
12	Temozolomide lymphodepletion enhances CAR abundance and correlates with antitumor efficacy against established glioblastoma. OncoImmunology, 2018, 7, e1434464.	2.1	69
13	T-Cell Exhaustion Signatures Vary with Tumor Type and Are Severe in Glioblastoma. Clinical Cancer Research, 2018, 24, 4175-4186.	3.2	402
14	A Rationally Designed Fully Human EGFRvIII:CD3-Targeted Bispecific Antibody Redirects Human T Cells to Treat Patient-derived Intracerebral Malignant Glioma. Clinical Cancer Research, 2018, 24, 3611-3631.	3.2	39
15	Dendritic Cells Enhance Polyfunctionality of Adoptively Transferred T Cells That Target Cytomegalovirus in Glioblastoma. Cancer Research, 2018, 78, 256-264.	0.4	82
16	DDIS-02. NOVEL BISPECIFIC ACTIVATOR OF MACROPHAGES FOR THE TREATMENT OF GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi69-vi69.	0.6	0
17	CD27 stimulation unveils the efficacy of linked class I/II peptide vaccines in poorly immunogenic tumors by orchestrating a coordinated CD4/CD8 T cell response. Oncolmmunology, 2018, 7, e1502904.	2.1	11
18	Promising vaccines for treating glioblastoma. Expert Opinion on Biological Therapy, 2018, 18, 1159-1170.	1.4	8

LUIS SANCHEZ-PEREZ

#	Article	IF	CITATIONS
19	A simple and enzyme-free method for processing infiltrating lymphocytes from small mouse tumors for ELISpot analysis. Journal of Immunological Methods, 2018, 459, 90-93.	0.6	4
20	Hyaluronic acid based low viscosity hydrogel as a novel carrier for Convection Enhanced Delivery of CAR T cells. Journal of Clinical Neuroscience, 2018, 56, 163-168.	0.8	31
21	Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nature Medicine, 2018, 24, 1459-1468.	15.2	437
22	Long-term Survival in Glioblastoma with Cytomegalovirus pp65-Targeted Vaccination. Clinical Cancer Research, 2017, 23, 1898-1909.	3.2	215
23	Systemic activation of antigen-presenting cells via RNA-loaded nanoparticles. Oncolmmunology, 2017, 6, e1256527.	2.1	59
24	IMST-44. LYMPHOPENIA ENHANCES THE EFFICACY OF CAR T CELLS DELIVERED LOCO-REGIONALLY IN THE BRAIN FOR THE TREATMENT OF GLIOBLASTOMA. Neuro-Oncology, 2016, 18, vi96-vi96.	0.6	0
25	Emerging immunotherapies for glioblastoma. Expert Opinion on Emerging Drugs, 2016, 21, 133-145.	1.0	34
26	Serum elevation of B lymphocyte stimulator does not increase regulatory B cells in glioblastoma patients undergoing immunotherapy. Cancer Immunology, Immunotherapy, 2016, 65, 205-211.	2.0	6
27	Novel role of hematopoietic stem cells in immunologic rejection of malignant gliomas. Oncolmmunology, 2015, 4, e994374.	2.1	41
28	Bridging infectious disease vaccines with cancer immunotherapy: a role for targeted RNA based immunotherapeutics. , 2015, 3, 13.		13
29	Immunotherapy for malignant glioma. , 2015, 6, 68.		36
30	Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature, 2015, 519, 366-369.	13.7	429
31	Generation of CAR T Cells for Adoptive Therapy in the Context of Glioblastoma Standard of Care. Journal of Visualized Experiments, 2015, , .	0.2	17
32	Are BiTEs the "missing link―in cancer therapy?. Oncolmmunology, 2015, 4, e1008339.	2.1	59
33	EGFRvIII-Specific Chimeric Antigen Receptor T Cells Migrate to and Kill Tumor Deposits Infiltrating the Brain Parenchyma in an Invasive Xenograft Model of Glioblastoma. PLoS ONE, 2014, 9, e94281.	1.1	99
34	Leveraging chemotherapy-induced lymphopenia to potentiate cancer immunotherapy. Oncolmmunology, 2014, 3, e944054.	2.1	19
35	Chimeric antigen receptor engineered T cells can eliminate brain tumors and initiate long-term protection against recurrence. Oncolmmunology, 2014, 3, e944059.	2.1	8
36	EGFRvIII mCAR-Modified T-Cell Therapy Cures Mice with Established Intracerebral Glioma and Generates Host Immunity against Tumor-Antigen Loss. Clinical Cancer Research, 2014, 20, 972-984.	3.2	254

LUIS SANCHEZ-PEREZ

#	Article	IF	CITATIONS
37	Intracerebral delivery of a third generation EGFRvIII-specific chimeric antigen receptor is efficacious against human glioma. Journal of Clinical Neuroscience, 2014, 21, 189-190.	0.8	94
38	BLyS levels correlate with vaccine-induced antibody titers in patients with glioblastoma lymphodepleted by therapeutic temozolomide. Cancer Immunology, Immunotherapy, 2013, 62, 983-987.	2.0	13
39	Human Regulatory T Cells Kill Tumor Cells through Granzyme-Dependent Cytotoxicity upon Retargeting with a Bispecific Antibody. Cancer Immunology Research, 2013, 1, 163-167.	1.6	61
40	Rational design and generation of recombinant control reagents for bispecific antibodies through CDR mutagenesis. Journal of Immunological Methods, 2013, 395, 14-20.	0.6	5
41	Regulatory T cells are redirected to kill glioblastoma by an EGFRvIII-targeted bispecific antibody. Oncolmmunology, 2013, 2, e26757.	2.1	30
42	Systemic administration of a bispecific antibody targeting EGFRvIII successfully treats intracerebral glioma. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 270-275.	3.3	120
43	Immunotherapy with Tumor Vaccines for the Treatment of Malignant Gliomas. Current Drug Discovery Technologies, 2012, 9, 237-255.	0.6	4
44	Th17 Cells Are Long Lived and Retain a Stem Cell-like Molecular Signature. Immunity, 2011, 35, 972-985.	6.6	392
45	Genetic Engineering of Murine CD8+ and CD4+ T Cells for Preclinical Adoptive Immunotherapy Studies. Journal of Immunotherapy, 2011, 34, 343-352.	1.2	80
46	Monoclonal antibody blockade of IL-2 receptor $\hat{I}\pm$ during lymphopenia selectively depletes regulatory T cells in mice and humans. Blood, 2011, 118, 3003-3012.	0.6	104
47	Tumor-Specific CD8+ T Cells Expressing Interleukin-12 Eradicate Established Cancers in Lymphodepleted Hosts. Cancer Research, 2010, 70, 6725-6734.	0.4	227
48	Adoptively transferred effector cells derived from naÃ ⁻ ve rather than central memory CD8 ⁺ T cells mediate superior antitumor immunity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17469-17474.	3.3	348
49	Antitumor Immunity Can Be Uncoupled from Autoimmunity following Heat Shock Protein 70–Mediated Inflammatory Killing of Normal Pancreas. Cancer Research, 2009, 69, 7767-7774.	0.4	28
50	Type 17 CD8+ T cells display enhanced antitumor immunity. Blood, 2009, 114, 596-599.	0.6	196
51	Delivery of CCL21 to Metastatic Disease Improves the Efficacy of Adoptive T-Cell Therapy. Cancer Research, 2007, 67, 300-308.	0.4	35
52	Toll-like Receptors in Tumor Immunotherapy. Clinical Cancer Research, 2007, 13, 5280-5289.	3.2	114
53	Induction of hsp70-Mediated Th17 Autoimmunity Can Be Exploited as Immunotherapy for Metastatic Prostate Cancer. Cancer Research, 2007, 67, 11970-11979.	0.4	83
54	Killing of Normal Melanocytes, Combined with Heat Shock Protein 70 and CD40L Expression, Cures Large Established Melanomas. Journal of Immunology, 2006, 177, 4168-4177.	0.4	39

#	Article	IF	CITATIONS
55	Tumor-targeted, systemic delivery of therapeutic viral vectors using hitchhiking on antigen-specific T cells. Nature Medicine, 2005, 11, 1073-1081.	15.2	137
56	Potent Selection of Antigen Loss Variants of B16 Melanoma following Inflammatory Killing of Melanocytes In vivo. Cancer Research, 2005, 65, 2009-2017.	0.4	78
57	A simple method to cure established tumors by inflammatory killing of normal cells. Nature Biotechnology, 2004, 22, 1125-1132.	9.4	112