John M Ratcliffe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/121485/publications.pdf

Version: 2024-02-01

236612 2,106 56 25 citations h-index papers

43 g-index 58 58 58 1840 times ranked docs citations citing authors all docs

253896

#	Article	IF	CITATIONS
1	Unique near isometric ontogeny in the pterosaur <i>Rhamphorhynchus</i> suggests hatchlings could fly. Lethaia, 2021, 54, 106-112.	0.6	9
2	The influence of bat ecology on viral diversity and reservoir status. Ecology and Evolution, 2020, 10, 5748-5758.	0.8	17
3	Potential foraging niche release in insectivorous bat species relatively unaffected by white-nose syndrome?. Canadian Journal of Zoology, 2020, 98, 667-680.	0.4	5
4	Habituation and ecological salience: insights into the foraging ecology of the fringed-lipped bat, Trachops cirrhosus. Behavioral Ecology and Sociobiology, 2019, 73, 1.	0.6	2
5	Sonar strobe groups and buzzes are produced before powered flight is achieved in the juvenile big brown bat, <i>Eptesicus fuscus</i> . Journal of Experimental Biology, 2019, 222, .	0.8	4
6	Phylogeny matters: revisiting â€̃a comparison of bats and rodents as reservoirs of zoonotic viruses'. Royal Society Open Science, 2019, 6, 181182.	1.1	26
7	Auditory opportunity and visual constraint enabled the evolution of echolocation in bats. Nature Communications, 2018, 9, 98.	5.8	57
8	Bats without borders: Predators learn novel prey cues from other predatory species. Science Advances, 2018, 4, eaaq0579.	4.7	15
9	Younger vampire bats (Desmodus rotundus) are more likely than adults to explore novel objects. PLoS ONE, 2018, 13, e0196889.	1.1	15
10	AÂmethod for rapid testing of social learning in vampire bats. Royal Society Open Science, 2018, 5, 172483.	1.1	5
11	Sensory biology: Bats united by cochlear development. Nature Ecology and Evolution, 2017, 1, 46.	3.4	1
12	Body Size Predicts Echolocation Call Peak Frequency Better than Gape Height in Vespertilionid Bats. Scientific Reports, 2017, 7, 828.	1.6	37
13	Oilbirds produce echolocation signals beyond their best hearing range and adjust signal design to natural light conditions. Royal Society Open Science, 2017, 4, 170255.	1.1	11
14	Fungus Causing White-Nose Syndrome in Bats Accumulates Genetic Variability in North America with No Sign of Recombination. MSphere, 2017, 2, .	1.3	24
15	Sonar sound groups and increased terminal buzz duration reflect task complexity in hunting bats. Scientific Reports, 2016, 6, 21500.	1.6	13
16	Should I Stay or Should I Go? Fission–Fusion Dynamics in Bats. , 2016, , 65-103.		15
17	To Scream or to Listen? Prey Detection and Discrimination in Animal-Eating Bats. Springer Handbook of Auditory Research, 2016, , 93-116.	0.3	18
18	Evolutionary escalation: the bat–moth arms race. Journal of Experimental Biology, 2016, 219, 1589-1602.	0.8	93

#	Article	IF	Citations
19	Echolocation in the bat, <i>Rhinolophus capensis</i> : the influence of clutter, conspecifics and prey on call design and intensity. Biology Open, 2015, 4, 693-701.	0.6	23
20	Clutter and conspecifics: a comparison of their influence on echolocation and flight behaviour in Daubenton's bat, Myotis daubentonii. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2015, 201, 295-304.	0.7	10
21	Range-dependent flexibility in the acoustic field of view of echolocating porpoises (Phocoena) Tj ETQq1 1 0.7843	14 rgBT /0 2.8	Overlock 10
22	Social learning within and across species: information transfer in mouse-eared bats. Canadian Journal of Zoology, 2014, 92, 129-139.	0.4	22
23	Sensory Biology: Echolocation from Click to Call, Mouth to Wing. Current Biology, 2014, 24, R1160-R1162.	1.8	5
24	Niche-specific cognitive strategies: object memory interferes with spatial memory in the predatory bat, Myotis nattereri. Journal of Experimental Biology, 2014, 217, 3293-300.	0.8	14
25	The simple ears of noctuoid moths are tuned to the calls of their sympatric bat community. Journal of Experimental Biology, 2013, 216, 3954-62.	0.8	34
26	Convergent acoustic field of view in echolocating bats. Nature, 2013, 493, 93-96.	13.7	104
27	How the bat got its buzz. Biology Letters, 2013, 9, 20121031.	1.0	67
28	Echolocation in Oilbirds and swiftlets. Frontiers in Physiology, 2013, 4, 123.	1.3	80
29	Evolution of high duty cycle echolocation in bats. Journal of Experimental Biology, 2012, 215, 2935-2944.	0.8	106
30	Superfast Muscles Set Maximum Call Rate in Echolocating Bats. Science, 2011, 333, 1885-1888.	6.0	104
31	Frequency alternation and an offbeat rhythm indicate foraging behavior in the echolocating bat, Saccopteryx bilineata. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2011, 197, 413-423.	0.7	32
32	Echolocation call intensity and directionality in flying short-tailed fruit bats, <i>Carollia perspicillata</i> (Phyllostomidae). Journal of the Acoustical Society of America, 2011, 129, 427-435.	0.5	73
33	Light enough to travel: migratory bats have smaller brains, but not larger hippocampi, than sedentary species. Biology Letters, 2011, 7, 233-236.	1.0	20
34	Adaptive auditory risk assessment in the dogbane tiger moth when pursued by bats. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 364-370.	1,2	19
35	Release from bats: genetic distance and sensoribehavioural regression in the Pacific field cricket, Teleogryllus oceanicus. Die Naturwissenschaften, 2010, 97, 53-61.	0.6	14
36	Bats. Current Biology, 2010, 20, R1060-R1062.	1.8	17

#	Article	IF	Citations
37	Flower Bats (Glossophaga soricina) and Fruit Bats (Carollia perspicillata) Rely on Spatial Cues over Shapes and Scents When Relocating Food. PLoS ONE, 2010, 5, e10808.	1.1	35
38	Tiger moths and the threat of bats: decision-making based on the activity of a single sensory neuron. Biology Letters, 2009, 5, 368-371.	1.0	24
39	Neuroecology and diet selection in phyllostomid bats. Behavioural Processes, 2009, 80, 247-251.	0.5	18
40	Predator-Prey Interaction in an Auditory World., 2009,, 201-226.		14
41	The effectiveness of katydid (Neoconocephalus ensiger) song cessation as antipredator defence against the gleaning bat Myotis septentrionalis. Behavioral Ecology and Sociobiology, 2008, 63, 217-226.	0.6	32
42	Ignoring the irrelevant: auditory tolerance of audible but innocuous sounds in the bat-detecting ears of moths. Die Naturwissenschaften, 2008, 95, 241-245.	0.6	12
43	Multimodal warning signals for a multiple predator world. Nature, 2008, 455, 96-99.	13.7	90
44	Nocturnal activity positively correlated with auditory sensitivity in noctuoid moths. Biology Letters, 2008, 4, 262-265.	1.0	16
45	Anti-bat flight activity in sound-producing versus silent moths. Canadian Journal of Zoology, 2008, 86, 582-587.	0.4	9
46	Beware of bats, beware of birds: the auditory responses of eared moths to bat and bird predation. Behavioral Ecology, 2008, 19, 1333-1342.	1.0	41
47	Neural evolution in the bat-free habitat of Tahiti: partial regression in an anti-predator auditory system. Biology Letters, 2007, 3, 26-28.	1.0	36
48	Behavioral Flexibility Positively Correlated with Relative Brain Volume in Predatory Bats. Brain, Behavior and Evolution, 2006, 67, 165-176.	0.9	86
49	Animal Behavior: Who Will Croak Next?. Current Biology, 2006, 16, R455-R456.	1.8	2
50	Hunting in unfamiliar space: echolocation in the Indian false vampire bat, Megaderma lyra, when gleaning prey. Behavioral Ecology and Sociobiology, 2005, 58, 157-164.	0.6	47
51	The adaptive function of tiger moth clicks against echolocating bats: an experimental and synthetic approach. Journal of Experimental Biology, 2005, 208, 4689-4698.	0.8	68
52	Roosts as information centres: social learning of food preferences in bats. Biology Letters, 2005, 1, 72-74.	1.0	78
53	Data, Sample Sizes and Statistics Affect the Recognition of Species of Bats by Their Echolocation Calls. Acta Chiropterologica, 2004, 6, 347-363.	0.2	34
54	Conspecifics influence call design in the Brazilian free-tailed bat, Tadarida brasiliensis. Canadian Journal of Zoology, 2004, 82, 966-971.	0.4	67

#	Article	IF	CITATIONS
55	An exception to the rule: common vampire bats do not learn taste aversions. Animal Behaviour, 2003, 65, 385-389.	0.8	56
56	Behavioural flexibility: the little brown bat, Myotis lucifugus, and the northern long-eared bat, M. septentrionalis, both glean and hawk prey. Animal Behaviour, 2003, 66, 847-856.	0.8	114