Qingwu Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12148298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Substituting green or far-red radiation for blue radiation induces shade avoidance and promotes growth in lettuce and kale. Environmental and Experimental Botany, 2019, 162, 383-391.	4.2	70
2	Far-red radiation interacts with relative and absolute blue and red photon flux densities to regulate growth, morphology, and pigmentation of lettuce and basil seedlings. Scientia Horticulturae, 2019, 255, 269-280.	3.6	65
3	Blue Radiation Interacts with Green Radiation to Influence Growth and Predominantly Controls Quality Attributes of Lettuce. Journal of the American Society for Horticultural Science, 2020, 145, 75-87.	1.0	44
4	Moderate-intensity blue radiation can regulate flowering, but not extension growth, of several photoperiodic ornamental crops. Environmental and Experimental Botany, 2017, 134, 12-20.	4.2	27
5	Low-intensity blue light in night-interruption lighting does not influence flowering of herbaceous ornamentals. Scientia Horticulturae, 2015, 186, 230-238.	3.6	20
6	Promotion of Flowering from Far-red Radiation Depends on the Photosynthetic Daily Light Integral. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 465-471.	1.0	19
7	Growth Responses of Red-Leaf Lettuce to Temporal Spectral Changes. Frontiers in Plant Science, 2020, 11, 571788.	3.6	18
8	Controlling Flowering of Photoperiodic Ornamental Crops with Light-emitting Diode Lamps: A Coordinated Grower Trial. HortTechnology, 2014, 24, 702-711.	0.9	17
9	Regulation of flowering by green light depends on its photon flux density and involves cryptochromes. Physiologia Plantarum, 2019, 166, 762-771.	5.2	12
10	Blue radiation signals and saturates photoperiodic flowering of several long-day plants at crop-specific photon flux densities. Scientia Horticulturae, 2020, 271, 109470.	3.6	10
11	Control of Flowering Using Night-Interruption and Day-Extension LED Lighting. , 2016, , 191-201.		6
12	The role of blue light in night-interruption lighting of petunia. Acta Horticulturae, 2015, , 101-106.	0.2	1