
Richard J Saykally

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12148275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single gallium nitride nanowire lasers. Nature Materials, 2002, 1, 106-110.	27.5	1,144
2	Nanoribbon Waveguides for Subwavelength Photonics Integration. Science, 2004, 305, 1269-1273.	12.6	879
3	Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides. Journal of Physical Chemistry B, 2003, 107, 8816-8828.	2.6	602
4	Dendritic Nanowire Ultraviolet Laser Array. Journal of the American Chemical Society, 2003, 125, 4728-4729.	13.7	577
5	Small Carbon Clusters:  Spectroscopy, Structure, and Energetics. Chemical Reviews, 1998, 98, 2313-2358.	47.7	567
6	Tunable nanowire nonlinear optical probe. Nature, 2007, 447, 1098-1101.	27.8	544
7	Energetics of Hydrogen Bond Network Rearrangements in Liquid Water. Science, 2004, 306, 851-853.	12.6	476
8	Single Nanowire Lasers. Journal of Physical Chemistry B, 2001, 105, 11387-11390.	2.6	425
9	ON THE NATURE OF IONS AT THE LIQUID WATER SURFACE. Annual Review of Physical Chemistry, 2006, 57, 333-364.	10.8	416
10	The Effects of Dissolved Halide Anions on Hydrogen Bonding in Liquid Water. Journal of the American Chemical Society, 2007, 129, 13847-13856.	13.7	416
11	Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14171-14174.	7.1	369
12	Ultrafast Carrier Dynamics in Single ZnO Nanowire and Nanoribbon Lasers. Nano Letters, 2004, 4, 197-204.	9.1	319
13	Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires. Nano Letters, 2002, 2, 279-283.	9.1	305
14	Self-Organized GaN Quantum Wire UV Lasers. Journal of Physical Chemistry B, 2003, 107, 8721-8725.	2.6	281
15	Evidence for an Enhanced Hydronium Concentration at the Liquid Water Surface. Journal of Physical Chemistry B, 2005, 109, 7976-7980.	2.6	226
16	Optical routing and sensing with nanowire assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7800-7805.	7.1	224
17	The structure of ambient water. Molecular Physics, 2010, 108, 1415-1433.	1.7	209
18	Elucidating the mechanism of selective ion adsorption to the liquid water surface. Proceedings of the National Academy of Sciences of the United States of America. 2012, 109, 701-705.	7.1	202

RICHARD J SAYKALLY

#	Article	IF	CITATIONS
19	Is the liquid water surface basic or acidic? Macroscopic vs. molecular-scale investigations. Chemical Physics Letters, 2008, 458, 255-261.	2.6	192
20	Confirmation of enhanced anion concentration at the liquid water surface. Chemical Physics Letters, 2004, 397, 51-55.	2.6	178
21	Enhanced Concentration of Polarizable Anions at the Liquid Water Surface:Â SHG Spectroscopy and MD Simulations of Sodium Thiocyanide. Journal of Physical Chemistry B, 2005, 109, 10915-10921.	2.6	175
22	Direct experimental validation of the Jones–Ray effect. Chemical Physics Letters, 2004, 397, 46-50.	2.6	168
23	Probing the Interfacial Structure of Aqueous Electrolytes with Femtosecond Second Harmonic Generation Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 14060-14073.	2.6	137
24	Adsorption of Ions to the Surface of Dilute Electrolyte Solutions:  The Jonesâ^'Ray Effect Revisited. Journal of the American Chemical Society, 2005, 127, 15446-15452.	13.7	125
25	Soft X-ray Absorption Spectroscopy of Liquids and Solutions. Chemical Reviews, 2017, 117, 13909-13934.	47.7	103
26	Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13369-13373.	7.1	84
27	Near-Field Scanning Optical Microscopy (NSOM) Studies of the Relationship between Interchain Interactions, Morphology, Photodamage, and Energy Transport in Conjugated Polymer Films. Journal of Physical Chemistry B, 2001, 105, 5153-5160.	2.6	82
28	Infrared Action Spectra of Ca2+(H2O)11â~'69 Exhibit Spectral Signatures for Condensed-Phase Structures with Increasing Cluster Size. Journal of the American Chemical Society, 2008, 130, 15482-15489.	13.7	79
29	Nonlinear Chemical Imaging Nanomicroscopy:Â From Second and Third Harmonic Generation to Multiplex (Broad-Bandwidth) Sum Frequency Generation Near-Field Scanning Optical Microscopy. Journal of Physical Chemistry B, 2002, 106, 5143-5154.	2.6	78
30	Hydration of Alkaline Earth Metal Dications: Effects of Metal Ion Size Determined Using Infrared Action Spectroscopy. Journal of the American Chemical Society, 2009, 131, 13270-13277.	13.7	72
31	Adsorption of thiocyanate ions to the dodecanol/water interface characterized by UV second harmonic generation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15176-15180.	7.1	61
32	Observation of nitrate ions at the air/water interface by UV-second harmonic generation. Chemical Physics Letters, 2007, 449, 261-265.	2.6	58
33	Chirped Coherent Anti-Stokes Raman Scattering for High Spectral Resolution Spectroscopy and Chemically Selective Imaging. Journal of Physical Chemistry B, 2006, 110, 5854-5864.	2.6	47
34	Measurement of Bromide Ion Affinities for the Air/Water and Dodecanol/Water Interfaces at Molar Concentrations by UV Second Harmonic Generation Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 13746-13751.	3.1	37
35	Communication: Near edge x-ray absorption fine structure spectroscopy of aqueous adenosine triphosphate at the carbon and nitrogen K-edges. Journal of Chemical Physics, 2010, 133, 101103.	3.0	30
36	Charge-Transfer-to-Solvent Spectrum of Thiocyanate at the Air/Water Interface Measured by Broadband Deep Ultraviolet Electronic Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 4753-4757.	4.6	28

RICHARD J SAYKALLY

#	Article	IF	CITATIONS
37	New Insights into the Charge-Transfer-to-Solvent Spectrum of Aqueous Iodide: Surface versus Bulk. Journal of Physical Chemistry Letters, 2020, 11, 1656-1661.	4.6	18
38	High resolution pulsed infrared cavity ringdown spectroscopy: Application to laser ablated carbon clusters. Journal of Chemical Physics, 2002, 116, 6640-6647.	3.0	17
39	Detection of the Linear Carbon Cluster C ₁₀ : Rotationally Resolved Diode‣aser Spectroscopy. ChemPhysChem, 2001, 2, 242-247.	2.1	14
40	Behavior of β-Amyloid 1â^'16 at the Airâ^'Water Interface at Varying pH by Nonlinear Spectroscopy and Molecular Dynamics Simulations. Journal of Physical Chemistry A, 2011, 115, 5873-5880.	2.5	12
41	The Structures and Vibrational Dynamics of Small Carbon Clusters. , 1993, , 7-21.		9
42	Soft X-ray absorption spectra of aqueous salt solutions with highly charged cations in liquid microjets. Chemical Physics Letters, 2010, 493, 94-96.	2.6	7
43	<title>Single nanowire lasers and waveguides</title> . , 2003, 5223, 187.		6
44	Free Electron Laser Measurement of Liquid Carbon Reflectivity in the Extreme Ultraviolet. Photonics, 2020, 7, 35.	2.0	0
45	Resonant UV SHG Studies of Ion Adsorption at Aqueous Interfaces. , 2009, , .		Ο