Fabio Lolicato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1214733/publications.pdf

Version: 2024-02-01

567144 642610 26 784 15 23 citations h-index g-index papers 31 31 31 1120 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A unifying framework for amyloid-mediated membrane damage: The lipid-chaperone hypothesis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2022, 1870, 140767.	1.1	15
2	A Role for Liquid-Ordered Plasma Membrane Nanodomains Coordinating the Unconventional Secretory Pathway of Fibroblast Growth Factor 2?. Frontiers in Cell and Developmental Biology, 2022, 10, 864257.	1.8	5
3	Dimerization of the pulmonary surfactant protein C in a membrane environment. PLoS ONE, 2022, 17, e0267155.	1.1	5
4	The role of alpha-helix on the structure-targeting drug design of amyloidogenic proteins. Chemistry and Physics of Lipids, 2021, 236, 105061.	1.5	7
5	Lipid-Chaperone Hypothesis: A Common Molecular Mechanism of Membrane Disruption by Intrinsically Disordered Proteins. ACS Chemical Neuroscience, 2020, 11, 4336-4350.	1.7	101
6	Modulating $\hat{Al^2}$ aggregation by tyrosol-based ligands: The crucial role of the catechol moiety. Biophysical Chemistry, 2020, 265, 106434.	1.5	19
7	Mcl-1 and Bok transmembrane domains: Unexpected players in the modulation of apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27980-27988.	3.3	19
8	Cholesterol Localization around the Metabotropic Glutamate Receptor 2. Journal of Physical Chemistry B, 2020, 124, 9061-9078.	1.2	3
9	Membrane-Dependent Binding and Entry Mechanism of Dopamine into Its Receptor. ACS Chemical Neuroscience, 2020, 11, 1914-1924.	1.7	21
10	The Na,K-ATPase acts upstream of phosphoinositide PI(4,5)P2 facilitating unconventional secretion of Fibroblast Growth Factor 2. Communications Biology, 2020, 3, 141.	2.0	21
11	Symmetry-breaking transitions in the early steps of protein self-assembly. European Biophysics Journal, 2020, 49, 175-191.	1.2	28
12	Nanoparticle–Membrane Interactions: The Role of Temperature and Lipid Charge on Intake/Uptake of Cationic Gold Nanoparticles into Lipid Bilayers (Small 23/2019). Small, 2019, 15, 1970124.	5.2	8
13	The Role of Temperature and Lipid Charge on Intake/Uptake of Cationic Gold Nanoparticles into Lipid Bilayers. Small, 2019, 15, e1805046.	5.2	35
14	The Devil Is in the Details: What Do We Really Track in Single-Particle Tracking Experiments of Diffusion in Biological Membranes?. Journal of Physical Chemistry Letters, 2019, 10, 1005-1011.	2.1	13
15	Initial Steps in the PI(4,5)P2 dependent Fibroblast Growth Factor 2 Oligomerization. Biophysical Journal, 2018, 114, 208a.	0.2	0
16	Detection and characterization at nM concentration of oligomers formed by hIAPP, Aβ (1–40) and their equimolar mixture using SERS and MD simulations. Physical Chemistry Chemical Physics, 2018, 20, 20588-20596.	1.3	22
17	Phospholipids Critical Micellar Concentrations Trigger Different Mechanisms of Intrinsically Disordered Proteins Interaction with Model Membranes. Journal of Physical Chemistry Letters, 2018, 9, 5125-5129.	2.1	66
18	Negatively Charged Gangliosides Promote Membrane Association of Amphipathic Neurotransmitters. Neuroscience, 2018, 384, 214-223.	1.1	17

FABIO LOLICATO

#	Article	lF	CITATION
19	Lipids, Neurotransmitters and their Receptors. Biophysical Journal, 2017, 112, 392a.	0.2	0
20	Molecular Basis of GLUT4 in Glucose Transport: Atomistic Molecular Dynamics Study. Biophysical Journal, 2017, 112, 139a.	0.2	0
21	Inhibition of $\hat{Al^2}$ Amyloid Growth and Toxicity by Silybins: The Crucial Role of Stereochemistry. ACS Chemical Neuroscience, 2017, 8, 1767-1778.	1.7	72
22	<i>doGlycans</i> –Tools for Preparing Carbohydrate Structures for Atomistic Simulations of Glycoproteins, Glycolipids, and Carbohydrate Polymers for GROMACS. Journal of Chemical Information and Modeling, 2017, 57, 2401-2406.	2.5	71
23	Key steps in unconventional secretion of fibroblast growth factor 2 reconstituted with purified components. ELife, 2017, 6, .	2.8	63
24	The Role of Cholesterol in Driving IAPP-Membrane Interactions. Biophysical Journal, 2016, 111, 140-151.	0.2	74
25	Lipid-assisted protein transport: A diffusion-reaction model supported by kinetic experiments and molecular dynamics simulations. Journal of Chemical Physics, 2016, 144, 184901.	1.2	45
26	Resveratrol interferes with the aggregation of membrane-bound human-IAPP: A molecular dynamics study. European Journal of Medicinal Chemistry, 2015, 92, 876-881.	2.6	47