
Vivek A Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1214674/publications.pdf Version: 2024-02-01

VINER A KIIMAD

#	Article	IF	CITATIONS
1	Association of prior local therapy and outcomes with programmedâ€death ligandâ€1 inhibitors in advanced urothelial cancer. BJU International, 2022, 130, 592-603.	2.5	3
2	iPSC-derived cranial neural crest-like cells can replicate dental pulp tissue with the aid of angiogenic hydrogel. Bioactive Materials, 2022, 14, 290-301.	15.6	7
3	Cells and material-based strategies for regenerative endodontics. Bioactive Materials, 2022, 14, 234-249.	15.6	17
4	Oxo-M and 4-PPBP Delivery via Multi-Domain Peptide Hydrogel Toward Tendon Regeneration. Frontiers in Bioengineering and Biotechnology, 2022, 10, 773004.	4.1	0
5	Response and Outcomes to Immune Checkpoint Inhibitors in Advanced Urothelial Cancer Based on Prior Intravesical Bacillus Calmette-Guerin. Clinical Genitourinary Cancer, 2022, 20, 165-175.	1.9	4
6	Angiogenic Hydrogels to Accelerate Early Wound Healing. Macromolecular Bioscience, 2022, 22, e2200067.	4.1	5
7	In vivo neuroprotective effect of a self-assembled peptide hydrogel. Chemical Engineering Journal, 2021, 408, 127295.	12.7	15
8	Immune checkpoint inhibitors (ICI) in advanced upper tract and lower tract urothelial carcinoma (UC): A comparison of outcomes Journal of Clinical Oncology, 2021, 39, 406-406.	1.6	0
9	Immune checkpoint inhibitors in advanced upper and lower tract urothelial carcinoma: a comparison of outcomes. BJU International, 2021, 128, 196-205.	2.5	18
10	A 3D Bioprinted Material That Recapitulates the Perivascular Bone Marrow Structure for Sustained Hematopoietic and Cancer Models. Polymers, 2021, 13, 480.	4.5	14
11	Nano Carbon Doped Polyacrylamide Gel Electrolytes for High Performance Supercapacitors. Molecules, 2021, 26, 2631.	3.8	11
12	Angiogenic hydrogels for dental pulp revascularization. Acta Biomaterialia, 2021, 126, 109-118.	8.3	38
13	Functionalized carbon nanotube doped gel electrolytes with enhanced mechanical and electrical properties for battery applications. Materials Chemistry and Physics, 2021, 264, 124448.	4.0	9
14	A New Prognostic Model in Patients with Advanced Urothelial Carcinoma Treated with First-line Immune Checkpoint Inhibitors. European Urology Oncology, 2021, 4, 464-472.	5.4	39
15	Materials and Cytokines in the Healing of Diabetic Foot Ulcers. Advanced Therapeutics, 2021, 4, 2100075.	3.2	18
16	Peptideâ€Based Inhibitors for SARS oVâ€2 and SARS oV. Advanced Therapeutics, 2021, 4, 2100104.	3.2	11
17	Self-assembling peptide hydrogels facilitate vascularization in two-component scaffolds. Chemical Engineering Journal, 2021, 422, 130145.	12.7	18
18	Preclinical Efficacy of Pro- and Anti-Angiogenic Peptide Hydrogels to Treat Age-Related Macular Degeneration. Bioengineering, 2021, 8, 190.	3.5	6

VIVEK A KUMAR

#	Article	IF	CITATIONS
19	Evaluation of Injectable Naloxone-Releasing Hydrogels. ACS Applied Bio Materials, 2020, 3, 7858-7864.	4.6	4
20	Evolving role of biomaterials in diagnostic and therapeutic radiation oncology. Bioactive Materials, 2020, 5, 233-240.	15.6	27
21	Angiogenic peptide hydrogels for treatment of traumatic brain injury. Bioactive Materials, 2020, 5, 124-132.	15.6	37
22	Structural Investigation of Hybrid Peptide Foldamers Composed of αâ€Dipeptide Equivalent βâ€Oxyâ€Î´ 5 â€amir Acids. Chemistry - A European Journal, 2020, 26, 4304-4309.	10 3.3	4
23	A self-assembled peptide hydrogel for cytokine sequestration. Journal of Materials Chemistry B, 2020, 8, 945-950.	5.8	19
24	Implantable anti-angiogenic scaffolds for treatment of neovascular ocular pathologies. Drug Delivery and Translational Research, 2020, 10, 1191-1202.	5.8	6
25	Regulation of Lipoprotein Homeostasis by Self-Assembling Peptides. ACS Applied Bio Materials, 2020, 3, 8978-8988.	4.6	8
26	Membrane-Disrupting Nanofibrous Peptide Hydrogels. ACS Biomaterials Science and Engineering, 2019, 5, 4657-4670.	5.2	38
27	Trends in the risk of second primary malignancies among survivors of chronic lymphocytic leukemia. Blood Cancer Journal, 2019, 9, 75.	6.2	43
28	Challenges in Translating from Bench to Bed-Side: Pro-Angiogenic Peptides for Ischemia Treatment. Molecules, 2019, 24, 1219.	3.8	9
29	Divergent Supramolecular Gelation of Backbone Modified Short Hybrid δ-Peptides. Biomacromolecules, 2019, 20, 1254-1262.	5.4	13
30	Racial disparities in incidence & survival of Kaposi's sarcoma in the United States. Indian Journal of Medical Research, 2019, 149, 354.	1.0	8
31	Self-Assembly of an Antiangiogenic Nanofibrous Peptide Hydrogel. ACS Applied Bio Materials, 2018, 1, 865-870.	4.6	31
32	Angiogenic Self-Assembling Peptide Scaffolds for Functional Tissue Regeneration. Biomacromolecules, 2018, 19, 3597-3611.	5.4	39
33	Self-Assembly of a Dentinogenic Peptide Hydrogel. ACS Omega, 2018, 3, 5980-5987.	3.5	50
34	Injectable Self-Assembling Peptide Hydrogels for <i>Tissue Writing</i> and Embryonic Stem Cell Culture. Journal of Biomedical Nanotechnology, 2018, 14, 802-807.	1.1	16
35	Trends in the Risk of Second Primary Malignancies (SPMs) Among Survivors of Chronic Lymphocytic Leukemia(CLL). Blood, 2018, 132, 4869-4869.	1.4	0
36	Disparity in Clinical Trial Opportunities for Patients with B-Cell Malignancies in the United States. Blood, 2018, 132, 4861-4861.	1.4	0

VIVEK A KUMAR

#	Article	IF	CITATIONS
37	Trends in the Utilization of Radiation Therapy (XRT) Among Patients with Non-Hodgkin's Lymphoma (NHL) in the United States (US). Blood, 2018, 132, 4765-4765.	1.4	Ο
38	Timeliness of Initial Therapy in Multiple Myeloma (MM): Trends and Factors Influencing Patient Care. Blood, 2018, 132, 4764-4764.	1.4	0
39	Sociodemographic Profile and Outcomes of Patients with Non-Diffuse Large B-Cell Lymphoma (non-DLBCL) Treated at Minority-Predominant Facilities in the United States. Blood, 2018, 132, 4868-4868.	1.4	0
40	Treatment of hind limb ischemia using angiogenic peptide nanofibers. Biomaterials, 2016, 98, 113-119.	11.4	94
41	Development of peptide inhibitors of HIV transmission. Bioactive Materials, 2016, 1, 109-121.	15.6	22
42	Rational design of fiber forming supramolecular structures. Experimental Biology and Medicine, 2016, 241, 899-908.	2.4	27
43	Highly Angiogenic Peptide Nanofibers. ACS Nano, 2015, 9, 860-868.	14.6	140
44	Self-assembling multidomain peptides tailor biological responses through biphasic release. Biomaterials, 2015, 52, 71-78.	11.4	102
45	Drug-Triggered and Cross-Linked Self-Assembling Nanofibrous Hydrogels. Journal of the American Chemical Society, 2015, 137, 4823-4830.	13.7	116
46	Controlled Angiogenesis in Peptide Nanofiber Composite Hydrogels. ACS Biomaterials Science and Engineering, 2015, 1, 845-854.	5.2	35
47	Nanofibrous Snake Venom Hemostat. ACS Biomaterials Science and Engineering, 2015, 1, 1300-1305.	5.2	48
48	Bidirectional crosstalk between periventricular endothelial cells and neural progenitor cells promotes the formation of a neurovascular unit. Brain Research, 2014, 1565, 8-17.	2.2	35
49	A Nanostructured Synthetic Collagen Mimic for Hemostasis. Biomacromolecules, 2014, 15, 1484-1490.	5.4	131
50	Microablation of collagen-based substrates for soft tissue engineering. Biomedical Materials (Bristol), 2014, 9, 011002.	3.3	14
51	Two-Step Self-Assembly of Liposome-Multidomain Peptide Nanofiber Hydrogel for Time-Controlled Release. Biomacromolecules, 2014, 15, 3587-3595.	5.4	71
52	Collagen-based substrates with tunable strength for soft tissue engineering. Biomaterials Science, 2013, 1, 1193.	5.4	32
53	Acellular vascular grafts generated from collagen and elastin analogs. Acta Biomaterialia, 2013, 9, 8067-8074.	8.3	134
54	MEMS-assisted spatially homogeneous endothelialization of a high length-to-depth aspect ratio microvascular network. , 2011, 2011, 290-3.		4

VIVEK A KUMAR

#	Article	IF	CITATIONS
55	Cell Surface Engineering with Polyelectrolyte Multilayer Thin Films. Journal of the American Chemical Society, 2011, 133, 7054-7064.	13.7	178
56	Elastin-like protein matrix reinforced with collagen microfibers for soft tissue repair. Biomaterials, 2011, 32, 5371-5379.	11.4	84
57	Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges. Cardiovascular Engineering and Technology, 2011, 2, 137-148.	1.6	85
58	A Biologically Active Surface Enzyme Assembly that Attenuates Thrombus Formation. Advanced Functional Materials, 2011, 21, 4736-4743.	14.9	26
59	Fibrillogenesis in continuously spun synthetic collagen fiber. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 93B, 24-38.	3.4	45
60	The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts. Biomaterials, 2010, 31, 7175-7182.	11.4	103
61	Microcrimped Collagen Fiberâ€Elastin Composites. Advanced Materials, 2010, 22, 2041-2044.	21.0	42
62	A template-based fabrication technique for spatially-designed polymer micro/nanofiber composites. , 2009, 2009, 1869-1872.		3
63	Biodegradable poly(diol citrate) nanocomposite elastomers for soft tissue engineering. Journal of Materials Chemistry, 2007, 17, 900-906.	6.7	41