
Warren Heideman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12146563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zebrafish as a Model Vertebrate for Investigating Chemical Toxicity. Toxicological Sciences, 2005, 86, 6-19.	3.1	1,100
2	Purification of a novel calmodulin-binding protein from bovine cerebral cortex membranes. Biochemistry, 1983, 22, 4615-4618.	2.5	288
3	Heart Malformation Is an Early Response to TCDD in Embryonic Zebrafish. Toxicological Sciences, 2005, 84, 368-377.	3.1	276
4	Identification of receptor contact site involved in receptor–G protein coupling. Nature, 1987, 330, 758-760.	27.8	258
5	Aryl Hydrocarbon Receptor 2 Mediates 2,3,7,8-Tetrachlorodibenzo-p-dioxin Developmental Toxicity in Zebrafish. Toxicological Sciences, 2003, 76, 138-150.	3.1	238
6	Quantum Dot Nanotoxicity Assessment Using the Zebrafish Embryo. Environmental Science & Technology, 2009, 43, 1605-1611.	10.0	221
7	Tissue-Specific Expression of AHR2, ARNT2, and CYP1A in Zebrafish Embryos and Larvae: Effects of Developmental Stage and 2,3,7,8-Tetrachlorodibenzo-p-dioxin Exposure. Toxicological Sciences, 2002, 68, 403-419.	3.1	200
8	Purification of the calmodulin-sensitive adenylate cyclase from bovine cerebral cortex. Biochemistry, 1985, 24, 3776-3783.	2.5	190
9	Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicology and Applied Pharmacology, 2007, 225, 70-79.	2.8	179
10	The Zebrafish (Danio rerio) Aryl Hydrocarbon Receptor Type 1 Is a Novel Vertebrate Receptor. Molecular Pharmacology, 2002, 62, 234-249.	2.3	165
11	Cloning and characterization of the zebrafish (Danio rerio) aryl hydrocarbon receptor. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1444, 35-48.	2.4	163
12	Understanding dioxin developmental toxicity using the zebrafish model. Birth Defects Research Part A: Clinical and Molecular Teratology, 2006, 76, 7-18.	1.6	151
13	Aryl Hydrocarbon Receptor Activation Produces Heart-Specific Transcriptional and Toxic Responses in Developing Zebrafish. Molecular Pharmacology, 2006, 70, 549-561.	2.3	148
14	Reproductive and developmental toxicity of dioxin in fish. Molecular and Cellular Endocrinology, 2012, 354, 121-138.	3.2	138
15	Titanium dioxide nanoparticles produce phototoxicity in the developing zebrafish. Nanotoxicology, 2012, 6, 670-679.	3.0	136
16	Influence of Humic Acid on Titanium Dioxide Nanoparticle Toxicity to Developing Zebrafish. Environmental Science & Technology, 2013, 47, 4718-4725.	10.0	129
17	Water Permeability and TCDD-Induced Edema in Zebrafish Early-Life Stages. Toxicological Sciences, 2004, 78, 78-87.	3.1	128
18	Blocking Expression of AHR2 and ARNT1 in Zebrafish Larvae Protects Against Cardiac Toxicity of 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Toxicological Sciences, 2006, 94, 175-182.	3.1	116

Warren Heideman

#	Article	IF	CITATIONS
19	Two Forms of Aryl Hydrocarbon Receptor Type 2 in Rainbow Trout (Oncorhynchus mykiss). Journal of Biological Chemistry, 1999, 274, 15159-15166.	3.4	111
20	Disruption of erythropoiesis by dioxin in the zebrafish. Developmental Dynamics, 2001, 222, 581-594.	1.8	107
21	Using Zebrafish as a Model System for Studying the Transgenerational Effects of Dioxin. Toxicological Sciences, 2014, 138, 403-411.	3.1	103
22	Transactivation Activity of Human, Zebrafish, and Rainbow Trout Aryl Hydrocarbon Receptors Expressed in COS-7 Cells: Greater Insight into Species Differences in Toxic Potency of Polychlorinated Dibenzo-p-dioxin, Dibenzofuran, and Biphenyl Congeners. Toxicology and Applied Pharmacology, 1999, 159, 41-51.	2.8	97
23	Aryl Hydrocarbon Receptor-Mediated Down-Regulation of <i>Sox9b</i> Causes Jaw Malformation in Zebrafish Embryos. Molecular Pharmacology, 2008, 74, 1544-1553.	2.3	97
24	TiO ₂ Nanoparticle Exposure and Illumination during Zebrafish Development: Mortality at Parts per Billion Concentrations. Environmental Science & Technology, 2013, 47, 4726-4733.	10.0	84
25	Identification and expression of alternatively spliced aryl hydrocarbon nuclear translocator 2 (ARNT2) cDNAs from zebrafish with distinct functions. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1494, 117-128.	2.4	82
26	Persistent Adverse Effects on Health and Reproduction Caused by Exposure of Zebrafish to 2,3,7,8-Tetrachlorodibenzo-p-dioxin During Early Development and Gonad Differentiation. Toxicological Sciences, 2009, 109, 75-87.	3.1	82
27	Identification of Zebrafish ARNT1 Homologs: 2,3,7,8-Tetrachlorodibenzo-p-dioxin Toxicity in the Developing Zebrafish Requires ARNT1. Molecular Pharmacology, 2006, 69, 776-787.	2.3	81
28	ACE2 is required for daughter cell-specific G1 delay in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10275-10280.	7.1	71
29	Glucose Regulation of Saccharomyces cerevisiae Cell Cycle Genes. Eukaryotic Cell, 2003, 2, 143-149.	3.4	66
30	<i>Sox9b</i> Is Required for Epicardium Formation and Plays a Role in TCDD-Induced Heart Malformation in Zebrafish. Molecular Pharmacology, 2013, 84, 353-360.	2.3	64
31	Stb3 Binds to Ribosomal RNA Processing Element Motifs That Control Transcriptional Responses to Growth in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2007, 282, 26623-26628.	3.4	62
32	Interactions between 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and Hypoxia Signaling Pathways in Zebrafish: Hypoxia Decreases Responses to TCDD in Zebrafish Embryos. Toxicological Sciences, 2004, 78, 68-77.	3.1	61
33	Toxicity of Oxidatively Degraded Quantum Dots to Developing Zebrafish (Danio rerio). Environmental Science & Technology, 2013, 47, 9132-9139.	10.0	59
34	Early Dioxin Exposure Causes Toxic Effects in Adult Zebrafish. Toxicological Sciences, 2013, 135, 241-250.	3.1	58
35	Dioxin induction of transgenerational inheritance of disease in zebrafish. Molecular and Cellular Endocrinology, 2014, 398, 36-41.	3.2	58
36	AZF1 Is a Glucose-Dependent Positive Regulator of CLN3 Transcription in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2002, 22, 1607-1614.	2.3	54

Warren Heideman

#	Article	IF	CITATIONS
37	Zebrafish and Cardiac Toxicology. Cardiovascular Toxicology, 2005, 5, 203-214.	2.7	52
38	Growth-Independent Regulation of <i>CLN3</i> mRNA Levels by Nutrients in <i>Saccharomyces cerevisiae</i> . Journal of Bacteriology, 1998, 180, 225-230.	2.2	48
39	Protein Kinase A, TOR, and Glucose Transport Control the Response to Nutrient Repletion in <i>Saccharomyces cerevisiae</i> . Eukaryotic Cell, 2008, 7, 358-367.	3.4	47
40	ARNT2 Is Not Required for TCDD Developmental Toxicity in Zebrafish. Toxicological Sciences, 2004, 82, 250-258.	3.1	45
41	The Function and Properties of the Azf1 Transcriptional Regulator Change with Growth Conditions in Saccharomyces cerevisiae. Eukaryotic Cell, 2006, 5, 313-320.	3.4	45
42	Dioxin Inhibits Zebrafish Epicardium and Proepicardium Development. Toxicological Sciences, 2013, 131, 558-567.	3.1	44
43	Cardiac Myocyte-Specific AHR Activation Phenocopies TCDD-Induced Toxicity in Zebrafish. Toxicological Sciences, 2014, 141, 141-154.	3.1	44
44	Dioxin disrupts cranial cartilage and dermal bone development in zebrafish larvae. Aquatic Toxicology, 2015, 164, 52-60.	4.0	40
45	Multiple modes of proepicardial cell migration require heartbeat. BMC Developmental Biology, 2014, 14, 18.	2.1	38
46	Dioxin inhibition of swim bladder development in zebrafish: Is it secondary to heart failure?. Aquatic Toxicology, 2015, 162, 10-17.	4.0	38
47	Transcriptional Regulation of CLN3 Expression by Glucose in Saccharomyces cerevisiae. Journal of Bacteriology, 1998, 180, 4508-4515.	2.2	38
48	Comparative genomics identifies genes mediating cardiotoxicity in the embryonic zebrafish heart. Physiological Genomics, 2008, 33, 148-158.	2.3	34
49	Lrrc10 is required for early heart development and function in zebrafish. Developmental Biology, 2007, 308, 494-506.	2.0	33
50	2,3,7,8-Tetrachlorodibenzo-p-dioxin Exposure Prevents Cardiac Valve Formation in Developing Zebrafish. Toxicological Sciences, 2008, 104, 303-311.	3.1	33
51	Stb3 Plays a Role in the Glucose-Induced Transition from Quiescence to Growth in <i>Saccharomyces cerevisiae</i> . Genetics, 2010, 185, 797-810.	2.9	32
52	Glucose, Nitrogen, and Phosphate Repletion in Saccharomyces cerevisiae: Common Transcriptional Responses to Different Nutrient Signals. G3: Genes, Genomes, Genetics, 2012, 2, 1003-1017.	1.8	31
53	Sensitivity to Dioxin Decreases as Zebrafish Mature. Toxicological Sciences, 2012, 127, 360-370.	3.1	30
54	Adenylyl cyclase in yeast: Antibodies and mutations identify a regulatory domain. Journal of Cellular Biochemistry, 1990, 42, 229-242.	2.6	28

#	Article	IF	CITATIONS
55	Relative potencies of polychlorinated dibenzoâ€∢i>pâ€dioxin, dibenzofuran, and biphenyl congeners to induce cytochrome P4501A mRNA in a zebrafish liver cell line. Environmental Toxicology and Chemistry, 2001, 20, 1053-1058.	4.3	28
56	sox9b is required in cardiomyocytes for cardiac morphogenesis and function. Scientific Reports, 2018, 8, 13906.	3.3	28
57	Potential Roles of Arnt2 in Zebrafish Larval Development. Zebrafish, 2009, 6, 79-91.	1.1	24
58	Characterization of the adult zebrafish cardiac proteome using online pH gradient strong cation exchangeâ€RP 2D LC coupled with ESI MS/MS. Journal of Separation Science, 2010, 33, 1462-1471.	2.5	20
59	Regulation of Gene Expression by Glucose inSaccharomyces cerevisiae: a Role for ADA2and ADA3/NGG1. Journal of Bacteriology, 1999, 181, 4755-4760.	2.2	19
60	Coordinated Regulation of Growth Genes in Saccharomyces cerevisiae. Cell Cycle, 2007, 6, 1210-1219.	2.6	18
61	TCDD Inhibits Heart Regeneration in Adult Zebrafish. Toxicological Sciences, 2013, 132, 211-221.	3.1	17
62	Construction and characterization of a sox9b transgenic reporter line. International Journal of Developmental Biology, 2014, 58, 693-699.	0.6	17
63	Identification of a Critical Amino Acid in the Aryl Hydrocarbon Receptor. Journal of Biological Chemistry, 2002, 277, 13210-13218.	3.4	15
64	Reproductive Impairment of Great Lakes Lake Trout by Dioxin-Like Chemicals. , 2008, , 819-875.		14
65	A Dominant Negative Zebrafish Ahr2 Partially Protects Developing Zebrafish from Dioxin Toxicity. PLoS ONE, 2011, 6, e28020.	2.5	14
66	RELATIVE POTENCIES OF POLYCHLORINATED DIBENZO-p-DIOXIN, DIBENZOFURAN, AND BIPHENYL CONGENERS TO INDUCE CYTOCHROME P4501A mRNA IN A ZEBRAFISH LIVER CELL LINE. Environmental Toxicology and Chemistry, 2001, 20, 1053.	4.3	14
67	Statistically Enhanced Spectral Counting Approach to TCDD Cardiac Toxicity in the Adult Zebrafish Heart. Journal of Proteome Research, 2013, 12, 3093-3103.	3.7	11
68	Structure and Function of G-Protein α Chains. , 1990, , 17-40.		9
69	Reconstitution of Calmodulin-Sensitive Adenylate Cyclase from Bovine Brain with Phosphatidylcholine Liposomes. Journal of Neurochemistry, 1985, 44, 818-824.	3.9	6
70	Characterization of Zebrafish Cardiac Proteome Using Online pH Gradient SCX–RP HPLC–MS/MS Platform. Methods in Molecular Biology, 2013, 1005, 119-127.	0.9	6
71	Analysis of the zebrafish sox9b promoter: Identification of elements that recapitulate organ-specific expression of sox9b. Gene, 2016, 578, 281-289.	2.2	4
72	Adverse effects in adulthood resulting from low-level dioxin exposure in juvenile zebrafish. Endocrine Disruptors (Austin, Tex), 2014, 2, e28309.	1.1	3

#	Article	IF	CITATIONS
73	Epicardium Formation as a Sensor in Toxicology. Journal of Developmental Biology, 2013, 1, 112-125.	1.7	1
74	Long term potentiation and CaM-sensitive adenylyl cyclase: Long-term prospects. Behavioral and Brain Sciences, 1995, 18, 477-478.	0.7	0
75	Using zebrafish to study the biological impact of metal and metal oxide nanoparticles. International Journal of Biomedical Nanoscience and Nanotechnology, 2013, 3, 19.	0.1	0