
Mengxiao Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12146194/publications.pdf Version: 2024-02-01

Μενιζαίλο Υμ

#	Article	IF	CITATIONS
1	Versatile Synthesis Strategy for Carboxylic Acidâ^functionalized Upconverting Nanophosphors as Biological Labels. Journal of the American Chemical Society, 2008, 130, 3023-3029.	6.6	789
2	Clearance Pathways and Tumor Targeting of Imaging Nanoparticles. ACS Nano, 2015, 9, 6655-6674.	7.3	694
3	Different sized luminescent gold nanoparticles. Nanoscale, 2012, 4, 4073.	2.8	554
4	Passive Tumor Targeting of Renal-Clearable Luminescent Gold Nanoparticles: Long Tumor Retention and Fast Normal Tissue Clearance. Journal of the American Chemical Society, 2013, 135, 4978-4981.	6.6	534
5	A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Its Application in Bioimaging. Journal of the American Chemical Society, 2007, 129, 10322-10323.	6.6	493
6	Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nature Nanotechnology, 2017, 12, 1096-1102.	15.6	408
7	Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials, 2011, 32, 1148-1156.	5.7	399
8	Transport and interactions of nanoparticles in the kidneys. Nature Reviews Materials, 2018, 3, 358-374.	23.3	378
9	FRET-based sensor for imaging chromium(iii) in living cells. Chemical Communications, 2008, , 3387.	2.2	361
10	A Nonemissive Iridium(III) Complex That Specifically Lights-Up the Nuclei of Living Cells. Journal of the American Chemical Society, 2011, 133, 11231-11239.	6.6	346
11	Laser Scanning Up-Conversion Luminescence Microscopy for Imaging Cells Labeled with Rare-Earth Nanophosphors. Analytical Chemistry, 2009, 81, 930-935.	3.2	338
12	Multisignaling Optical-Electrochemical Sensor for Hg ²⁺ Based on a Rhodamine Derivative with a Ferrocene Unit. Organic Letters, 2007, 9, 4729-4732.	2.4	323
13	Series of New Cationic Iridium(III) Complexes with Tunable Emission Wavelength and Excited State Properties:Â Structures, Theoretical Calculations, and Photophysical and Electrochemical Properties. Inorganic Chemistry, 2006, 45, 6152-6160.	1.9	312
14	Highly Sensitive and Fast Responsive Fluorescence Turnâ€On Chemodosimeter for Cu ²⁺ and Its Application in Live Cell Imaging. Chemistry - A European Journal, 2008, 14, 6892-6900.	1.7	296
15	Luminescent Gold Nanoparticles with Mixed Valence States Generated from Dissociation of Polymeric Au(I) Thiolates. Journal of Physical Chemistry C, 2010, 114, 7727-7732.	1.5	277
16	Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Materials Today, 2013, 16, 477-486.	8.3	276
17	Cationic iridium(iii) complexes for phosphorescence staining in the cytoplasm of living cells. Chemical Communications, 2008, , 2115.	2.2	247
18	PEGylation and Zwitterionization: Pros and Cons in the Renal Clearance and Tumor Targeting of Nearâ€IRâ€Emitting Gold Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 12572-12576.	7.2	237

Mengxiao Yu

#	Article	IF	CITATIONS
19	Cationic Iridium(III) Complexes with Tunable Emission Color as Phosphorescent Dyes for Live Cell Imaging. Organometallics, 2010, 29, 1085-1091.	1.1	236
20	Multisignal Chemosensor for Cr ³⁺ and Its Application in Bioimaging. Organic Letters, 2008, 10, 2557-2560.	2.4	230
21	Highly Selective Phosphorescent Chemosensor for Fluoride Based on an Iridium(III) Complex Containing Arylborane Units. Inorganic Chemistry, 2008, 47, 9256-9264.	1.9	216
22	Facile Epoxidation Strategy for Producing Amphiphilic Up-Converting Rare-Earth Nanophosphors as Biological Labels. Chemistry of Materials, 2008, 20, 7003-7009.	3.2	196
23	Amphiphilic Diarylethene as a Photoswitchable Probe for Imaging Living Cells. Journal of the American Chemical Society, 2008, 130, 15750-15751.	6.6	196
24	A selective turn-on fluorescent sensor for FeIII and application to bioimaging. Tetrahedron Letters, 2007, 48, 3709-3712.	0.7	185
25	Nearâ€Infrared Emitting Radioactive Gold Nanoparticles with Molecular Pharmacokinetics. Angewandte Chemie - International Edition, 2012, 51, 10118-10122.	7.2	184
26	Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node. Biomaterials, 2011, 32, 2999-3007.	5.7	181
27	Luminescent Gold Nanoparticles with pH-Dependent Membrane Adsorption. Journal of the American Chemical Society, 2011, 133, 11014-11017.	6.6	179
28	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	15.6	149
29	Noninvasive Staging of Kidney Dysfunction Enabled by Renalâ€Clearable Luminescent Gold Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, 2787-2791.	7.2	133
30	Luminescent Gold Nanoparticles with Sizeâ€Independent Emission. Angewandte Chemie - International Edition, 2016, 55, 8894-8898.	7.2	126
31	Up-conversion luminescent switch based on photochromic diarylethene and rare-earth nanophosphors. Chemical Communications, 2008, , 4786.	2.2	107
32	Renal Clearable Luminescent Gold Nanoparticles: From the Bench to the Clinic. Angewandte Chemie - International Edition, 2019, 58, 4112-4128.	7.2	104
33	A highly selective and sensitive fluorescent turn-on sensor for Hg2+ and its application in live cell imaging. Organic and Biomolecular Chemistry, 2009, 7, 2554.	1.5	96
34	Tailoring Renal Clearance and Tumor Targeting of Ultrasmall Metal Nanoparticles with Particle Density. Angewandte Chemie - International Edition, 2016, 55, 16039-16043.	7.2	92
35	Highly selective colorimetric sensor for cysteine and homocysteine based on azo derivatives. Tetrahedron Letters, 2006, 47, 7093-7096.	0.7	91
36	Hydrothermal synthesis of hexagonal lanthanide-doped LaF ₃ nanoplates with bright upconversion luminescence. Nanotechnology, 2008, 19, 375702.	1.3	88

Μενσχιάο Υυ

#	Article	IF	CITATIONS
37	High ontrast Noninvasive Imaging of Kidney Clearance Kinetics Enabled by Renal Clearable Nanofluorophores. Angewandte Chemie - International Edition, 2015, 54, 15434-15438.	7.2	83
38	Renal Clearance and Degradation of Glutathione-Coated Copper Nanoparticles. Bioconjugate Chemistry, 2015, 26, 511-519.	1.8	78
39	Dose Dependencies and Biocompatibility of Renal Clearable Gold Nanoparticles: From Mice to Nonâ€human Primates. Angewandte Chemie - International Edition, 2018, 57, 266-271.	7.2	72
40	Inâ€Vivo Xâ€ray Imaging of Transport of Renal Clearable Gold Nanoparticles in the Kidneys. Angewandte Chemie - International Edition, 2017, 56, 13356-13360.	7.2	70
41	Tuning the Inâ€Vivo Transport of Anticancer Drugs Using Renalâ€Clearable Gold Nanoparticles. Angewandte Chemie - International Edition, 2019, 58, 8479-8483.	7.2	69
42	Targeting orthotopic gliomas with renal-clearable luminescent gold nanoparticles. Nano Research, 2017, 10, 1366-1376.	5.8	68
43	Cancer Photothermal Therapy with ICG-Conjugated Gold Nanoclusters. Bioconjugate Chemistry, 2020, 31, 1522-1528.	1.8	60
44	Interactions of Renal learable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects. Angewandte Chemie - International Edition, 2017, 56, 4314-4319.	7.2	51
45	Physiological stability and renal clearance of ultrasmall zwitterionic gold nanoparticles: Ligand length matters. APL Materials, 2017, 5, 053406.	2.2	51
46	Renal clearable noble metal nanoparticles: photoluminescence, elimination, and biomedical applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1453.	3.3	49
47	Glutathione-Coated Luminescent Gold Nanoparticles: A Surface Ligand for Minimizing Serum Protein Adsorption. ACS Applied Materials & Interfaces, 2014, 6, 11829-11833.	4.0	47
48	Luminescent gold nanoparticles: A new class of nanoprobes for biomedical imaging. Experimental Biology and Medicine, 2013, 238, 1199-1209.	1.1	41
49	Noninvasive Staging of Kidney Dysfunction Enabled by Renalâ€Clearable Luminescent Gold Nanoparticles. Angewandte Chemie, 2016, 128, 2837-2841.	1.6	41
50	One‧tep Interfacial Synthesis and Assembly of Ultrathin Luminescent AuNPs/Silica Membranes. Advanced Materials, 2012, 24, 3218-3222.	11.1	31
51	Luminescent Gold Nanoparticles with Sizeâ€Independent Emission. Angewandte Chemie, 2016, 128, 9040-9044.	1.6	31
52	In Situ Ligand-Directed Growth of Gold Nanoparticles in Biological Tissues. Nano Letters, 2020, 20, 1378-1382.	4.5	29
53	A photostable fluorescent probe for targeted imaging of tumour cells possessing integrin αvβ3**. Molecular BioSystems, 2009, 5, 241.	2.9	28
54	Tailoring Renal Clearance and Tumor Targeting of Ultrasmall Metal Nanoparticles with Particle Density. Angewandte Chemie, 2016, 128, 16273-16277.	1.6	28

Μενσχιάο Υυ

#	Article	IF	CITATIONS
55	Effect of Hydrophobicity on Nano-Bio Interactions of Zwitterionic Luminescent Gold Nanoparticles at the Cellular Level. Bioconjugate Chemistry, 2018, 29, 1841-1846.	1.8	26
56	Tailoring Kidney Transport of Organic Dyes with Low-Molecular-Weight PEGylation. Bioconjugate Chemistry, 2020, 31, 241-247.	1.8	25
57	Hyperfluorescence Imaging of Kidney Cancer Enabled by Renal Secretion Pathway Dependent Efflux Transport. Angewandte Chemie - International Edition, 2021, 60, 351-359.	7.2	23
58	Tuning the Inâ€Vivo Transport of Anticancer Drugs Using Renal learable Gold Nanoparticles. Angewandte Chemie, 2019, 131, 8567-8571.	1.6	22
59	Correlating Anticancer Drug Delivery Efficiency with Vascular Permeability of Renal Clearable Versus Nonâ€renal Clearable Nanocarriers. Angewandte Chemie - International Edition, 2019, 58, 12076-12080.	7.2	21
60	Labeling Monomeric Insulin with Renal-Clearable Luminescent Gold Nanoparticles. Bioconjugate Chemistry, 2015, 26, 2435-2441.	1.8	17
61	Interactions of Renal learable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects. Angewandte Chemie, 2017, 129, 4378-4383.	1.6	16
62	Noninvasive monitoring of hepatic glutathione depletion through fluorescence imaging and blood testing. Science Advances, 2021, 7, .	4.7	16
63	Dose Dependencies and Biocompatibility of Renal Clearable Gold Nanoparticles: From Mice to Nonâ€human Primates. Angewandte Chemie, 2018, 130, 272-277.	1.6	13
64	Surface-ligand effect on radiosensitization of ultrasmall luminescent gold nanoparticles. Journal of Innovative Optical Health Sciences, 2016, 09, 1642003.	0.5	11
65	Inâ€Vivo Xâ€ray Imaging of Transport of Renal Clearable Gold Nanoparticles in the Kidneys. Angewandte Chemie, 2017, 129, 13541-13545.	1.6	11
66	Renal Clearable Luminescent Gold Nanoparticles: From the Bench to the Clinic. Angewandte Chemie, 2019, 131, 4156-4172.	1.6	10
67	Surface-Chemistry Effect on Cellular Response of Luminescent Plasmonic Silver Nanoparticles. Bioconjugate Chemistry, 2014, 25, 453-459.	1.8	7
68	Hyperfluorescence Imaging of Kidney Cancer Enabled by Renal Secretion Pathway Dependent Efflux Transport. Angewandte Chemie, 2021, 133, 355-363.	1.6	3
69	Correlating Anticancer Drug Delivery Efficiency with Vascular Permeability of Renal Clearable Versus Nonâ€renal Clearable Nanocarriers. Angewandte Chemie, 2019, 131, 12204-12208.	1.6	2
70	How nanotechnology imaging can be used in kidney disease: an interview with Dr Mengxiao Yu. Nanomedicine, 2018, 13, 3071-3073.	1.7	0