
Michael Holzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12145904/publications.pdf Version: 2024-02-01

MICHAEL HOLZEL

#	Article	IF	CITATIONS
1	CRISPitope: A generic platform to model target antigens for adoptive TÂcell transfer therapy in mouse tumor models. STAR Protocols, 2022, 3, 101038.	0.5	1
2	The <scp>MITF</scp> regulatory network in melanoma. Pigment Cell and Melanoma Research, 2022, 35, 517-533.	1.5	11
3	The myeloid cell type I IFN system promotes antitumor immunity over proâ€ŧumoral inflammation in cancer Tâ€cell therapy. Clinical and Translational Immunology, 2021, 10, e1276.	1.7	5
4	Druggable epigenetic suppression of interferon-induced chemokine expression linked to <i>MYCN</i> amplification in neuroblastoma. , 2021, 9, e001335.		19
5	Lineage-Restricted Regulation of SCD and Fatty Acid Saturation by MITF Controls Melanoma Phenotypic Plasticity. Molecular Cell, 2020, 77, 120-137.e9.	4.5	87
6	CD155 on Tumor Cells Drives Resistance to Immunotherapy by Inducing the Degradation of the Activating Receptor CD226 in CD8+ TÂCells. Immunity, 2020, 53, 805-823.e15.	6.6	79
7	Adoptive T Cell Therapy Targeting Different Gene Products Reveals Diverse and Context-Dependent Immune Evasion in Melanoma. Immunity, 2020, 53, 564-580.e9.	6.6	27
8	BATF3 programs CD8+ T cell memory. Nature Immunology, 2020, 21, 1397-1407.	7.0	80
9	Targeting CD39 in Cancer Reveals an Extracellular ATP- and Inflammasome-Driven Tumor Immunity. Cancer Discovery, 2019, 9, 1754-1773.	7.7	173
10	Joint reconstruction and classification of tumor cells and cell interactions in melanoma tissue sections with synthesized training data. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 587-599.	1.7	6
11	Tissue-resident memory CD8+ T cells promote melanoma–immune equilibrium in skin. Nature, 2019, 565, 366-371.	13.7	266
12	RNA-seq analysis identifies different transcriptomic types and developmental trajectories of primary melanomas. Oncogene, 2018, 37, 6136-6151.	2.6	91
13	Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes and Development, 2017, 31, 18-33.	2.7	184
14	Amplification of N-Myc is associated with a T-cell-poor microenvironment in metastatic neuroblastoma restraining interferon pathway activity and chemokine expression. Oncolmmunology, 2017, 6, e1320626.	2.1	89
15	Reactive Neutrophil Responses Dependent on the Receptor Tyrosine Kinase c-MET Limit Cancer Immunotherapy. Immunity, 2017, 47, 789-802.e9.	6.6	207
16	Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nature Immunology, 2017, 18, 1004-1015.	7.0	504
17	MAPK Signaling and Inflammation Link Melanoma Phenotype Switching to Induction of CD73 during Immunotherapy. Cancer Research, 2017, 77, 4697-4709.	0.4	126
18	Targeting Adenosine in BRAF-Mutant Melanoma Reduces Tumor Growth and Metastasis. Cancer Research, 2017, 77, 4684-4696.	0.4	80

MICHAEL HOLZEL

#	Article	IF	CITATIONS
19	Directed Dedifferentiation Using Partial Reprogramming Induces Invasive Phenotype in Melanoma Cells. Stem Cells, 2016, 34, 832-846.	1.4	27
20	A stochastic model for immunotherapy of cancer. Scientific Reports, 2016, 6, 24169.	1.6	42
21	Inflammation-Induced Plasticity in Melanoma Therapy and Metastasis. Trends in Immunology, 2016, 37, 364-374.	2.9	59
22	A Preclinical Model of Malignant Peripheral Nerve Sheath Tumor-like Melanoma Is Characterized by Infiltrating Mast Cells. Cancer Research, 2016, 76, 251-263.	0.4	33
23	The experimental power of FR900359 to study Gq-regulated biological processes. Nature Communications, 2015, 6, 10156.	5.8	282
24	MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nature Communications, 2015, 6, 8755.	5.8	175
25	SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer. Cell Research, 2015, 25, 445-458.	5.7	36
26	Immune Cell–Poor Melanomas Benefit from PD-1 Blockade after Targeted Type I IFN Activation. Cancer Discovery, 2014, 4, 674-687.	7.7	226
27	Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature, 2014, 507, 109-113.	13.7	547
28	Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance?. Nature Reviews Cancer, 2013, 13, 365-376.	12.8	242
29	Myb-binding Protein 1a (Mybbp1a) Regulates Levels and Processing of Pre-ribosomal RNA. Journal of Biological Chemistry, 2012, 287, 24365-24377.	1.6	37
30	MED12 Controls the Response to Multiple Cancer Drugs through Regulation of TGF-Î ² Receptor Signaling. Cell, 2012, 151, 937-950.	13.5	371
31	Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature, 2012, 490, 412-416.	13.7	506
32	Defects in 18 S or 28 S rRNA Processing Activate the p53 Pathway. Journal of Biological Chemistry, 2010, 285, 6364-6370.	1.6	60
33	Chemotherapeutic Drugs Inhibit Ribosome Biogenesis at Various Levels. Journal of Biological Chemistry, 2010, 285, 12416-12425.	1.6	356
34	NF1 Is a Tumor Suppressor in Neuroblastoma that Determines Retinoic Acid Response and Disease Outcome. Cell, 2010, 142, 218-229.	13.5	190
35	The tumor suppressor p53 connects ribosome biogenesis to cell cycle control: a double-edged sword. Oncotarget, 2010, 1, 43-7.	0.8	14
36	c-Myc and Rel/NF-κB Are the Two Master Transcriptional Systems Activated in the Latency III Program of Epstein-Barr Virus-Immortalized B Cells. Journal of Virology, 2009, 83, 5014-5027.	1.5	52

MICHAEL HOLZEL

#	Article	IF	CITATIONS
37	ZNF423 Is Critically Required for Retinoic Acid-Induced Differentiation and Is a Marker of Neuroblastoma Outcome. Cancer Cell, 2009, 15, 328-340.	7.7	132
38	Notch1, Notch2, and Epstein-Barr virus–encoded nuclear antigen 2 signaling differentially affects proliferation and survival of Epstein-Barr virus–infected B cells. Blood, 2009, 113, 5506-5515.	0.6	31
39	The CALM and CALM/AF10 interactor CATS is a marker for proliferation. Molecular Oncology, 2008, 2, 356-367.	2.1	36
40	The BRCT domain of mammalian Pes1 is crucial for nucleolar localization and rRNA processing. Nucleic Acids Research, 2007, 35, 789-800.	6.5	41
41	Rapid conditional knock-down–knock-in system for mammalian cells. Nucleic Acids Research, 2007, 35, e17-e17.	6.5	12
42	Interdependence of Pes1, Bop1, and WDR12 Controls Nucleolar Localization and Assembly of the PeBoW Complex Required for Maturation of the 60S Ribosomal Subunit. Molecular and Cellular Biology, 2007, 27, 3682-3694.	1.1	116
43	c-MYC activation impairs the NF-κB and the interferon response: Implications for the pathogenesis of Burkitt's lymphoma. International Journal of Cancer, 2007, 120, 1387-1395.	2.3	77
44	Dominant-negative Pes1 mutants inhibit ribosomal RNA processing and cell proliferation via incorporation into the PeBoW-complex. Nucleic Acids Research, 2006, 34, 3030-3043.	6.5	79
45	Mammalian WDR12 is a novel member of the Pes1–Bop1 complex and is required for ribosome biogenesis and cell proliferation. Journal of Cell Biology, 2005, 170, 367-378.	2.3	166
46	Stringent doxycycline-dependent control of gene activities using an episomal one-vector system. Nucleic Acids Research, 2005, 33, e137-e137.	6.5	129
47	A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Research, 2003, 31, 6148-6156.	6.5	160
48	Myc/Max/Mad regulate the frequency but not the duration of productive cell cycles. EMBO Reports, 2001, 2, 1125-1132.	2.0	46