
## Sumit Siddharth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12145847/publications.pdf Version: 2024-02-01



**SIIMIT SIDDHADTH** 

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Procarcinogenic Colon Microbe Promotes Breast Tumorigenesis and Metastatic Progression and Concomitantly Activates Notch and $\hat{l}^2$ -Catenin Axes. Cancer Discovery, 2021, 11, 1138-1157.                                                         | 7.7 | 88        |
| 2  | Therapeutic targeting with DABILâ€4 depletes myeloid suppressor cells in 4T1 tripleâ€negative breast<br>cancer model. Molecular Oncology, 2021, 15, 1330-1344.                                                                                           | 2.1 | 15        |
| 3  | Tumor Microenvironment: Key Players in Triple Negative Breast Cancer Immunomodulation. Cancers, 2021, 13, 3357.                                                                                                                                          | 1.7 | 35        |
| 4  | Abstract 2690: Therapeutic browning of white adipose tissue in the tumor microenvironment to inhibit breast cancer progression. , 2021, , .                                                                                                              |     | 1         |
| 5  | Quinacrine and curcumin synergistically increased the breast cancer stem cells death by inhibiting<br>ABCG2 and modulating DNA damage repair pathway. International Journal of Biochemistry and Cell<br>Biology, 2020, 119, 105682.                      | 1.2 | 32        |
| 6  | Concomitant Inhibition of Cytoprotective Autophagy Augments the Efficacy of Withaferin A in<br>Hepatocellular Carcinoma. Cancers, 2019, 11, 453.                                                                                                         | 1.7 | 19        |
| 7  | Metallic gold and bioactive quinacrine hybrid nanoparticles inhibit oral cancer stem cell and<br>angiogenesis by deregulating inflammatory cytokines in p53 dependent manner. Nanomedicine:<br>Nanotechnology, Biology, and Medicine, 2018, 14, 883-896. | 1.7 | 45        |
| 8  | The soluble nectin-4 ecto-domain promotes breast cancer induced angiogenesis via endothelial<br>Integrin-β4. International Journal of Biochemistry and Cell Biology, 2018, 102, 151-160.                                                                 | 1.2 | 37        |
| 9  | Nectin-4 is a breast cancer stem cell marker that induces WNT/β-catenin signaling via Pi3k/Akt axis.<br>International Journal of Biochemistry and Cell Biology, 2017, 89, 85-94.                                                                         | 1.2 | 68        |
| 10 | Chitosan-Dextran sulfate coated doxorubicin loaded PLGA-PVA-nanoparticles caused apoptosis in<br>doxorubicin resistance breast cancer cells through induction of DNA damage. Scientific Reports, 2017,<br>7, 2143.                                       | 1.6 | 38        |
| 11 | TRAIL enhances quinacrine-mediated apoptosis in breast cancer cells through induction of autophagy via modulation of p21 and DR5 interactions. Cellular Oncology (Dordrecht), 2017, 40, 593-607.                                                         | 2.1 | 18        |
| 12 | Nanoquinacrine caused apoptosis in oral cancer stem cells by disrupting the interaction between GL1 and β catenin through activation of GSK3β. Toxicology and Applied Pharmacology, 2017, 330, 53-64.                                                    | 1.3 | 17        |
| 13 | Etoposide and doxorubicin enhance the sensitivity of triple negative breast cancers through<br>modulation of TRAIL-DR5 axis. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22,<br>1205-1224.                                       | 2.2 | 26        |
| 14 | Quinacrine induces apoptosis in cancer cells by forming a functional bridge between TRAIL-DR5 complex and modulating the mitochondrial intrinsic cascade. Oncotarget, 2017, 8, 248-267.                                                                  | 0.8 | 26        |
| 15 | SURVIVIN as a marker for quiescent-breast cancer stem cells—An intermediate, adherent, pre-requisite phase of breast cancer metastasis. Clinical and Experimental Metastasis, 2016, 33, 661-675.                                                         | 1.7 | 37        |
| 16 | Nanoquinacrine induced apoptosis in cervical cancer stem cells through the inhibition of hedgehog-GLI1 cascade: Role of GLI-1. Scientific Reports, 2016, 6, 20600.                                                                                       | 1.6 | 47        |
| 17 | ABT-888 and quinacrine induced apoptosis in metastatic breast cancer stem cells by inhibiting base excision repair via adenomatous polyposis coli. DNA Repair, 2016, 45, 44-55.                                                                          | 1.3 | 27        |
| 18 | Chk1 inhibitor synergizes quinacrine mediated apoptosis in breast cancer cells by compromising the base excision repair cascade. Biochemical Pharmacology, 2016, 105, 23-33.                                                                             | 2.0 | 21        |

SUMIT SIDDHARTH

| #  | ARTICLE                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Resveratrol and curcumin synergistically induces apoptosis in cigarette smoke condensate<br>transformed breast epithelial cells through a p21Waf1/Cip1 mediated inhibition of Hh-Gli signaling.<br>International Journal of Biochemistry and Cell Biology, 2015, 66, 75-84. | 1.2 | 37        |
| 20 | NECTIN-4 increased the 5-FU resistance in colon cancer cells by inducing the PI3K–AKT cascade. Cancer Chemotherapy and Pharmacology, 2015, 76, 471-479.                                                                                                                     | 1.1 | 39        |
| 21 | Anti-malarials are anti-cancers and vice versa – One arrow two sparrows. Acta Tropica, 2015, 149, 113-127.                                                                                                                                                                  | 0.9 | 23        |
| 22 | Enhancement of Cytotoxicity and Inhibition of Angiogenesis in Oral Cancer Stem Cells by a Hybrid<br>Nanoparticle of Bioactive Quinacrine and Silver: Implication of Base Excision Repair Cascade.<br>Molecular Pharmaceutics, 2015, 12, 4011-4025.                          | 2.3 | 51        |
| 23 | The Apoptotic Effect of Plant Based Nanosilver in Colon Cancer Cells is a p53 Dependent Process<br>Involving ROS and JNK Cascade. Pathology and Oncology Research, 2015, 21, 405-411.                                                                                       | 0.9 | 27        |
| 24 | 5-Fluorouracil mediated anti-cancer activity in colon cancer cells is through the induction of<br>Adenomatous Polyposis Coli: Implication of the long-patch base excision repair pathway. DNA Repair,<br>2014, 24, 15-25.                                                   | 1.3 | 39        |
| 25 | Resveratrol mediated cell death in cigarette smoke transformed breast epithelial cells is through<br>induction of p21Waf1/Cip1 and inhibition of long patch base excision repair pathway. Toxicology and<br>Applied Pharmacology, 2014, 275, 221-231.                       | 1.3 | 34        |
| 26 | Combretastatin A-4 inspired novel 2-aryl-3-arylamino-imidazo-pyridines/pyrazines as tubulin polymerization inhibitors, antimitotic and anticancer agents. MedChemComm, 2014, 5, 766-782.                                                                                    | 3.5 | 44        |
| 27 | Synthesis and biological evaluation of andrographolide analogues as anti-cancer agents. European<br>Journal of Medicinal Chemistry, 2014, 85, 95-106.                                                                                                                       | 2.6 | 44        |
| 28 | The contribution of heavy metals in cigarette smoke condensate to malignant transformation of<br>breast epithelial cells and in vivo initiation of neoplasia through induction of a PI3K–AKT–NFκB<br>cascade. Toxicology and Applied Pharmacology, 2014, 274, 168-179.      | 1.3 | 35        |
| 29 | Structural Elaboration of a Natural Product: Identification of 3,3â€2â€Diindolylmethane<br>Aminophosphonate and Urea Derivatives as Potent Anticancer Agents. ChemMedChem, 2013, 8, 1873-1884.                                                                              | 1.6 | 11        |
| 30 | Indenoindolone derivatives as topoisomerase Il–inhibiting anticancer agents. Bioorganic and<br>Medicinal Chemistry Letters, 2013, 23, 934-938.                                                                                                                              | 1.0 | 30        |
| 31 | Induction of Apoptosis by 4-(3-( <i>tert</i> -butylamino)imidazo[1,2- <i>α</i> ]pyridine-2-yl) Benzoic Acid in<br>Breast Cancer Cells via Upregulation of PTEN. Oncology Research, 2013, 21, 1-13.                                                                          | 0.6 | 16        |
| 32 | Scaffold hybridization in generation of indenoindolones as anticancer agents that induce apoptosis with cell cycle arrest at G2/M phase. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2474-2479.                                                                   | 1.0 | 45        |