
## Alfonso Iadonisi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1214533/publications.pdf Version: 2024-02-01



ALEONSO LADONISI

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Design, Synthesis, and Anticancer Activity of a Selenium-Containing Galectin-3 and Galectin-9N<br>Inhibitor. International Journal of Molecular Sciences, 2022, 23, 2581.                                                                      | 4.1 | 7         |
| 2  | Catalytic, Regioselective Sulfonylation of Carbohydrates with Dibutyltin Oxide under Solvent-Free<br>Conditions. Catalysts, 2021, 11, 202.                                                                                                     | 3.5 | 4         |
| 3  | Switchable synthesis of glycosyl selenides or diselenides with direct use of selenium as the selenating agent. Organic Chemistry Frontiers, 2021, 8, 1823-1829.                                                                                | 4.5 | 10        |
| 4  | Solventâ€Free Glycosylation from perâ€ <i>O</i> â€Acylated Donors Catalyzed by Methanesulfonic Acid.<br>European Journal of Organic Chemistry, 2021, 2021, 5669-5676.                                                                          | 2.4 | 6         |
| 5  | Microbiological-Chemical Sourced Chondroitin Sulfates Protect Neuroblastoma SH-SY5Y Cells<br>against Oxidative Stress and Are Suitable for Hydrogel-Based Controlled Release. Antioxidants, 2021,<br>10, 1816.                                 | 5.1 | 3         |
| 6  | Semisynthetic Isomers of Fucosylated Chondroitin Sulfate Polysaccharides with Fucosyl Branches at<br>a Non-Natural Site. Biomacromolecules, 2021, 22, 5151-5161.                                                                               | 5.4 | 5         |
| 7  | Solvent-Free Approaches in Carbohydrate Synthetic Chemistry: Role of Catalysis in Reactivity and<br>Selectivity. Catalysts, 2020, 10, 1142.                                                                                                    | 3.5 | 11        |
| 8  | Solvent-free, under air selective synthesis of α-glycosides adopting glycosyl chlorides as donors.<br>Organic and Biomolecular Chemistry, 2020, 18, 5157-5163.                                                                                 | 2.8 | 10        |
| 9  | (Semi)-Synthetic Fucosylated Chondroitin Sulfate Oligo- and Polysaccharides. Marine Drugs, 2020, 18, 293.                                                                                                                                      | 4.6 | 10        |
| 10 | Synthesis of diglycosylated (di)sulfides and comparative evaluation of their antiproliferative effect<br>against tumor cell lines: A focus on the nature of sugar-recognizing mediators involved.<br>Carbohydrate Research, 2019, 482, 107740. | 2.3 | 10        |
| 11 | Development of Semisynthetic, Regioselective Pathways for Accessing the Missing Sulfation Patterns of Chondroitin Sulfate. Biomacromolecules, 2019, 20, 3021-3030.                                                                             | 5.4 | 27        |
| 12 | One-pot synthesis of orthogonally protected sugars through sequential<br>base-promoted/acid-catalyzed steps: A solvent-free approach with self-generation of a catalytic<br>species. Tetrahedron Letters, 2019, 60, 1777-1780.                 | 1.4 | 11        |
| 13 | Synthesis of the tetrasaccharide repeating unit of the cryoprotectant capsular polysaccharide from<br><i>Colwellia psychrerythraea</i> 34H. Organic and Biomolecular Chemistry, 2019, 17, 3129-3140.                                           | 2.8 | 7         |
| 14 | A Study for the Access to a Semi-synthetic Regioisomer of Natural Fucosylated Chondroitin Sulfate<br>with Fucosyl Branches on N-acetyl-Galactosamine Units. Marine Drugs, 2019, 17, 655.                                                       | 4.6 | 13        |
| 15 | Solventâ€Free Conversion of Alcohols to Alkyl Iodides and Oneâ€Pot Elaborations Thereof.<br>ChemistrySelect, 2018, 3, 1616-1622.                                                                                                               | 1.5 | 10        |
| 16 | <i>C</i> -Glycosylation in platinum-based agents: a viable strategy to improve cytotoxicity and selectivity. Inorganic Chemistry Frontiers, 2018, 5, 2921-2933.                                                                                | 6.0 | 20        |
| 17 | Solvent-Free One-Pot Diversified Protection of Saccharide Polyols Via Regioselective Tritylations.<br>ChemistrySelect, 2017, 2, 4906-4911.                                                                                                     | 1.5 | 8         |
| 18 | Solvent-free synthesis of glycosyl chlorides based on the triphenyl phosphine/hexachloroacetone<br>system. Tetrahedron Letters, 2017, 58, 1762-1764.                                                                                           | 1.4 | 15        |

ALFONSO IADONISI

| #  | Article                                                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Development of Clickable Monophosphoryl Lipid A Derivatives toward Semisynthetic Conjugates with<br>Tumor-Associated Carbohydrate Antigens. Journal of Medicinal Chemistry, 2017, 60, 9757-9768.                                                                                                      | 6.4  | 12        |
| 20 | A review of chemical methods for the selective sulfation and desulfation of polysaccharides.<br>Carbohydrate Polymers, 2017, 174, 1224-1239.                                                                                                                                                          | 10.2 | 89        |
| 21 | Decoration of Chondroitin Polysaccharide with Threonine: Synthesis, Conformational Study, and Ice-Recrystallization Inhibition Activity. Biomacromolecules, 2017, 18, 2267-2276.                                                                                                                      | 5.4  | 14        |
| 22 | Orthogonal protection of saccharide polyols through solvent-free one-pot sequences based on regioselective silylations. Beilstein Journal of Organic Chemistry, 2016, 12, 2748-2756.                                                                                                                  | 2.2  | 18        |
| 23 | A Semisynthetic Approach to New Immunoadjuvant Candidates: Siteâ€&elective Chemical Manipulation of<br><i>Escherichia coli</i> Monophosphoryl Lipidâ€A. Chemistry - A European Journal, 2016, 22, 11053-11063.                                                                                        | 3.3  | 12        |
| 24 | Chemical Derivatization of Sulfated Glycosaminoglycans. European Journal of Organic Chemistry, 2016, 2016, 3018-3042.                                                                                                                                                                                 | 2.4  | 33        |
| 25 | A Modular Approach to a Library of Semiâ€Synthetic Fucosylated Chondroitin Sulfate Polysaccharides<br>with Different Sulfation and Fucosylation Patterns. Chemistry - A European Journal, 2016, 22,<br>18215-18226.                                                                                   | 3.3  | 24        |
| 26 | Three Solventâ€Free Catalytic Approaches to the Acetal Functionalization of Carbohydrates and Their<br>Applicability to Oneâ€Pot Generation of Orthogonally Protected Building Blocks. Advanced Synthesis<br>and Catalysis, 2015, 357, 3562-3572.                                                     | 4.3  | 21        |
| 27 | Chemical Fucosylation of a Polysaccharide: A Semisynthetic Access to Fucosylated Chondroitin Sulfate. Biomacromolecules, 2015, 16, 2237-2245.                                                                                                                                                         | 5.4  | 37        |
| 28 | Tin-Mediated Regioselective Benzylation and Allylation of Polyols: Applicability of a Catalytic Approach Under Solvent-Free Conditions. Journal of Organic Chemistry, 2014, 79, 213-222.                                                                                                              | 3.2  | 68        |
| 29 | A practical approach to regioselective O-benzylation of primary positions of polyols. Tetrahedron<br>Letters, 2013, 54, 1550-1552.                                                                                                                                                                    | 1.4  | 24        |
| 30 | Polymethylhydrosiloxane (PMHS): A Convenient Option for Synthetic Applications of the Iodine/Silane<br>Combined Reagent – Straightforward Entries to 2â€Hydroxyglycals and Useful Buildingâ€Blocks of<br>Glucuronic Acid and Glucosamine. European Journal of Organic Chemistry, 2013, 2013, 125-131. | 2.4  | 19        |
| 31 | The I2/Et3SiH system: A versatile combination with multiple applications in carbohydrate chemistry.<br>Pure and Applied Chemistry, 2011, 84, 1-10.                                                                                                                                                    | 1.9  | 11        |
| 32 | A straightforward synthetic access to symmetrical glycosyl disulfides and biological evaluation thereof. Organic and Biomolecular Chemistry, 2011, 9, 6278.                                                                                                                                           | 2.8  | 35        |
| 33 | A Microbiological–Chemical Strategy to Produce Chondroitin Sulfate A,C. Angewandte Chemie -<br>International Edition, 2011, 50, 6160-6163.                                                                                                                                                            | 13.8 | 60        |
| 34 | Oneâ€Pot Catalytic Glycosidation/Fmoc Removal – An Iterable Sequence for Straightforward Assembly<br>of Oligosaccharides Related to HIV gp120. European Journal of Organic Chemistry, 2010, 2010, 711-718.                                                                                            | 2.4  | 19        |
| 35 | A selective and operationally simple approach for removal of methoxy-, allyloxy-, and benzyloxycarbonyl groups from carbinols. Tetrahedron Letters, 2009, 50, 7051-7054.                                                                                                                              | 1.4  | 10        |
| 36 | BiBr <sub>3</sub> â€Promoted Activation of Peracetylated Glycosyl Iodides: Straightforward Access to<br>Synthetically Useful 2â€ <i>O</i> â€Đeprotected Allyl Glycosides. European Journal of Organic Chemistry,<br>2008, 2008, 6206-6212.                                                            | 2.4  | 16        |

ALFONSO IADONISI

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Novel Approaches for the Synthesis and Activation of Thio- and Selenoglycoside Donors. Journal of Organic Chemistry, 2007, 72, 6097-6106.                                                                                           | 3.2 | 92        |
| 38 | The behaviour of deoxyhexose trihaloacetimidates in selected glycosylations. Carbohydrate Research, 2007, 342, 1021-1029.                                                                                                           | 2.3 | 24        |
| 39 | Structural Determination of the O-Chain Polysaccharide from the Lipopolysaccharide of the<br>HaloalkaliphilicHalomonas pantelleriensis Bacterium. European Journal of Organic Chemistry, 2006,<br>2006, 1801-1808.                  | 2.4 | 18        |
| 40 | Efficient and direct synthesis of saccharidic 1,2-ethylidenes, orthoesters, and glycals from<br>peracetylated sugars via the in situ generation of glycosyl iodides with I2/Et3SiH. Tetrahedron Letters,<br>2003, 44, 7863-7866.    | 1.4 | 52        |
| 41 | Mild benzhydrylation and tritylation of saccharidic hydroxyls promoted by acid washed molecular sieves. Tetrahedron Letters, 2003, 44, 3733-3735.                                                                                   | 1.4 | 22        |
| 42 | An approach to the highly stereocontrolled synthesis of α-glycosides. Compatible use of the very acid<br>labile dimethoxytrityl protecting group with Yb(OTf)3-promoted glycosidation. Tetrahedron Letters,<br>2003, 44, 6479-6482. | 1.4 | 37        |
| 43 | An easy and efficient approach for the installation of alkoxycarbonyl protecting groups on carbohydrate hydroxyls. Tetrahedron Letters, 2000, 41, 9305-9309.                                                                        | 1.4 | 38        |
| 44 | Facile cleavage of carbohydrate benzyl ethers and benzylidene acetals using the reagent under two-phase conditions. Tetrahedron Letters, 1999, 40, 8439-8441.                                                                       | 1.4 | 92        |