
Baris Bingol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12144736/publications.pdf Version: 2024-02-01

RADIS RINCOL

#	Article	IF	CITATIONS
1	Genetic inactivation of RIP1 kinase does not ameliorate disease in a mouse model of ALS. Cell Death and Differentiation, 2021, 28, 915-931.	11.2	21
2	Genetic inactivation of RIP1 kinase activity in rats protects against ischemic brain injury. Cell Death and Disease, 2021, 12, 379.	6.3	9
3	Genetic ablation of Gpnmb does not alter synuclein-related pathology. Neurobiology of Disease, 2021, 159, 105494.	4.4	7
4	Clinical and dopamine transporter imaging characteristics of non-manifest LRRK2 and GBA mutation carriers in the Parkinson's Progression Markers Initiative (PPMI): a cross-sectional study. Lancet Neurology, The, 2020, 19, 71-80.	10.2	94
5	Dynamic Regulation of Mitochondrial Import by the Ubiquitin System. Molecular Cell, 2020, 77, 1107-1123.e10.	9.7	101
6	PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Reports, 2019, 29, 3280-3292.e7.	6.4	20
7	Autophagy and lysosomal pathways in nervous system disorders. Molecular and Cellular Neurosciences, 2018, 91, 167-208.	2.2	22
8	The Parkinson's progression markers initiative (PPMI) – establishing a PD biomarker cohort. Annals of Clinical and Translational Neurology, 2018, 5, 1460-1477.	3.7	330
9	A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci. Nature Genetics, 2017, 49, 1511-1516.	21.4	944
10	Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radical Biology and Medicine, 2016, 100, 210-222.	2.9	232
11	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
12	USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nature Cell Biology, 2015, 17, 160-169.	10.3	258
13	The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature, 2014, 510, 370-375.	27.8	660
14	Deconstruction for Reconstruction: The Role of Proteolysis in Neural Plasticity and Disease. Neuron, 2011, 69, 22-32.	8.1	256
15	Autophosphorylated CaMKIIα Acts as a Scaffold to Recruit Proteasomes to Dendritic Spines. Cell, 2010, 140, 567-578.	28.9	249
16	Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature, 2006, 441, 1144-1148.	27.8	307
17	Synaptic protein degradation by the ubiquitin proteasome system. Current Opinion in Neurobiology, 2005, 15, 536-541.	4.2	116
18	A proteasome-sensitive connection between PSD-95 and GluR1 endocytosis. Neuropharmacology, 2004, 47, 755-763.	4.1	84

#	Article	IF	CITATIONS
19	Ubiquitin-Mediated Proteasome Activity Is Required for Agonist-Induced Endocytosis of GluRs. Current Biology, 2003, 13, 2073-2081.	3.9	187