Constantin Lapa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1214344/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	⁶⁸ Ga-Pentixafor PET/CT for Detection of Chemokine Receptor CXCR4 Expression in Myeloproliferative Neoplasms. Journal of Nuclear Medicine, 2022, 63, 96-99.	5.0	13
2	AA amyloidosis in inflammatory active malignant paraganglioma. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2022, 29, 137-138.	3.0	3
3	High SUVs Have More Robust Repeatability in Patients with Metastatic Prostate Cancer: Results from a Prospective Test-Retest Cohort Imaged with ¹⁸ F-DCFPyL. Molecular Imaging, 2022, 2022, 7056983.	1.4	6
4	Molecular Imaging in Multiple Myeloma—Novel PET Radiotracers Improve Patient Management and Guide Therapy. Frontiers in Nuclear Medicine, 2022, 2, .	1.2	2
5	Training on Reporting and Data System (RADS) for Somatostatin-Receptor Targeted Molecular Imaging Can Reduce the Test Anxiety of Inexperienced Readers. Molecular Imaging and Biology, 2022, , 1.	2.6	2
6	SOAT1: A Suitable Target for Therapy in High-Grade Astrocytic Glioma?. International Journal of Molecular Sciences, 2022, 23, 3726.	4.1	5
7	Individualized treatment of differentiated thyroid cancer: The value of surgery in combination with radioiodine imaging and therapy – A German position paper from Surgery and Nuclear Medicine. Nuklearmedizin - NuclearMedicine, 2022, 61, .	0.7	7
8	Imaging of C-X-C Motif Chemokine Receptor 4 Expression in 690 Patients with Solid or Hematologic Neoplasms using ⁶⁸ Ga-PentixaFor PET. Journal of Nuclear Medicine, 2022, , jnumed.121.263693.	5.0	27
9	Impact of Tumor Burden on Normal Organ Distribution in Patients Imaged with CXCR4-Targeted [68Ga]Ga-PentixaFor PET/CT. Molecular Imaging and Biology, 2022, 24, 659-665.	2.6	17
10	Diverse PSMA expression in primary prostate cancer: reason for negative [68Ga]Ga-PSMA PET/CT scans? Immunohistochemical validation in 40 surgical specimens. European Journal of Nuclear Medicine and Molecular Imaging, 2022, , 1.	6.4	12
11	Associations between Normal Organs and Tumor Burden in Patients Imaged with Fibroblast Activation Protein Inhibitor-Directed Positron Emission Tomography. Cancers, 2022, 14, 2609.	3.7	8
12	In Vivo Functional Assessment of Sodium-Glucose Cotransporters (SGLTs) Using [¹⁸ F]Me4FDG PET in Rats. Molecular Imaging, 2022, 2022, .	1.4	1
13	Somatostatin receptor-directed molecular imaging for therapeutic decision-making in patients with medullary thyroid carcinoma. Endocrine, 2022, 78, 169-176.	2.3	5
14	Performance Evaluation of a Preclinical SPECT Scanner with a Collimator Designed for Medium-Sized Animals. Molecular Imaging, 2022, 2022, .	1.4	0
15	Sarcoid-like reactions: a potential pitfall in oncologic imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 931-932.	6.4	2
16	Prognostic implications of dual tracer PET/CT: PSMA ligand and [18F]FDG PET/CT in patients undergoing [177Lu]PSMA radioligand therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2024-2030.	6.4	59
17	At the Bedside: Profiling and treating patients with CXCR4-expressing cancers. Journal of Leukocyte Biology, 2021, 109, 953-967.	3.3	15
18	High Interobserver Agreement for the Standardized Reporting System SSTR-RADS 1.0 on Somatostatin Receptor PET/CT. Journal of Nuclear Medicine, 2021, 62, 514-520.	5.0	11

#	Article	IF	CITATIONS
19	Improved Primary Staging of Marginal-Zone Lymphoma by Addition of CXCR4-Directed PET/CT. Journal of Nuclear Medicine, 2021, 62, 1415-1421.	5.0	38
20	CXCR4-Directed PET/CT in Patients with Newly Diagnosed Neuroendocrine Carcinomas. Diagnostics, 2021, 11, 605.	2.6	18
21	Thyroid incidentalomas with increased focal 18F-FDG uptake in 18F-FDG PET/CT of a patient with multiple primary cancers Endocrine, 2021, 73, 491-492.	2.3	1
22	[18F]FDC-labelled stem cell PET imaging in different route of administrations and multiple animal species. Scientific Reports, 2021, 11, 10896.	3.3	11
23	Targeting fibroblast activation protein in newly diagnosed squamous cell carcinoma of the oral cavity – initial experience and comparison to [18F]FDG PET/CT and MRI. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3951-3960.	6.4	32
24	Dermal and cardiac autonomic fiber involvement in Parkinson's disease and multiple system atrophy. Neurobiology of Disease, 2021, 153, 105332.	4.4	17
25	Value of PET imaging for radiation therapy. Nuklearmedizin - NuclearMedicine, 2021, 60, 326-343.	0.7	2
26	Value of PET imaging for radiation therapy. Strahlentherapie Und Onkologie, 2021, 197, 1-23.	2.0	16
27	Development of Discordant Hypermetabolic Prostate Cancer Lesions in the Course of [177Lu]PSMA Radioligand Therapy and Their Possible Influence on Patient Outcome. Cancers, 2021, 13, 4270.	3.7	7
28	PSMA Theranostics: A "Must Have―in Every Prostate Cancer Center. Illustration of Two Clinical Cases and Review of the Literature. Clinical Genitourinary Cancer, 2021, 19, e235-e247.	1.9	2
29	Investigation of spleen CXCR4 expression by [68Ga]Pentixafor PET in a cohort of 145 solid cancer patients. EJNMMI Research, 2021, 11, 77.	2.5	16
30	Real world efficacy and safety of multi-tyrosine kinase inhibitors in radioiodine refractory thyroid cancer. Thyroid, 2021, 31, 1531-1541.	4.5	11
31	Current and future perspectives on functional molecular imaging in nephro-urology: theranostics on the horizon. Theranostics, 2021, 11, 6105-6119.	10.0	13
32	In Vivo Targeting of CXCR4—New Horizons. Cancers, 2021, 13, 5920.	3.7	23
33	The Number of Frames on ECG-Gated 18F-FDG Small Animal PET Has a Significant Impact on LV Systolic and Diastolic Functional Parameters. Molecular Imaging, 2021, 2021, 1-8.	1.4	2
34	Semiquantitative Parameters in PSMA-Targeted PET Imaging with [18F]DCFPyL: Impact of Tumor Burden on Normal Organ Uptake. Molecular Imaging and Biology, 2020, 22, 190-197.	2.6	27
35	68Ga-PSMA I&T PET/CT for primary staging of prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 168-177.	6.4	64
36	Imaging Inflammation in Atherosclerosis with CXCR4-Directed ⁶⁸ Ga-Pentixafor PET/CT: Correlation with ¹⁸ F-FDG PET/CT. Journal of Nuclear Medicine, 2020, 61, 751-756.	5.0	45

#	Article	IF	CITATIONS
37	Theranostics: Leveraging Molecular Imaging and Therapy to Impact Patient Management and Secure the Future of Nuclear Medicine. Journal of Nuclear Medicine, 2020, 61, 311-318.	5.0	40
38	False-negative 18F-PSMA-1007 PET/CT in metastatic prostate cancer related to high physiologic liver uptake. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2044-2046.	6.4	6
39	Objective Response and Prolonged Disease Control of Advanced Adrenocortical Carcinoma with Cabozantinib. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1461-1468.	3.6	39
40	¹⁸ F-Labeled, PSMA-Targeted Radiotracers: Leveraging the Advantages of Radiofluorination for Prostate Cancer Molecular Imaging. Theranostics, 2020, 10, 1-16.	10.0	117
41	<i>CIC</i> Mutation as a Molecular Mechanism of Acquired Resistance to Combined BRAF-MEK Inhibition in Extramedullary Multiple Myeloma with Central Nervous System Involvement. Oncologist, 2020, 25, 112-118.	3.7	39
42	Impact of whole-body vibration exercise on physical performance and bone turnover in patients with monoclonal gammopathy of undetermined significance. Journal of Bone Oncology, 2020, 25, 100323.	2.4	5
43	The Link between Cytogenetics/Genomics and Imaging Patterns of Relapse and Progression in Patients with Relapsed/Refractory Multiple Myeloma: A Pilot Study Utilizing 18F-FDG PET/CT. Cancers, 2020, 12, 2399.	3.7	4
44	Differential diagnosis of parkinsonism: a head-to-head comparison of FDG PET and MIBG scintigraphy. Npj Parkinson's Disease, 2020, 6, 39.	5.3	8
45	Capabilities of multi-pinhole SPECT with two stationary detectors for in vivo rat imaging. Scientific Reports, 2020, 10, 18616.	3.3	3
46	Feasibility of 4D T2* quantification in the lung with oxygen gas challenge in patients with non-small cell lung cancer. Physica Medica, 2020, 72, 46-51.	0.7	2
47	Infection and Inflammation Imaging. PET Clinics, 2020, 15, 215-229.	3.0	9
48	DNA Damage in Blood Leukocytes of Prostate Cancer Patients Undergoing PET/CT Examinations with [68Ga]Ga-PSMA I&T. Cancers, 2020, 12, 388.	3.7	9
49	18F-FDG and 11C-Methionine PET/CT in Newly Diagnosed Multiple Myeloma Patients: Comparison of Volume-Based PET Biomarkers. Cancers, 2020, 12, 1042.	3.7	24
50	CXCR4-Targeted PET Imaging of Central Nervous System B-Cell Lymphoma. Journal of Nuclear Medicine, 2020, 61, 1765-1771.	5.0	34
51	Recent advances in radiotracers targeting norepinephrine transporter: structural development and radiolabeling improvements. Journal of Neural Transmission, 2020, 127, 851-873.	2.8	18
52	Performance evaluation of fifth-generation ultra-high-resolution SPECT system with two stationary detectors and multi-pinhole imaging. EJNMMI Physics, 2020, 7, 64.	2.7	7
53	Feasibility of CXCR4-Directed Radioligand Therapy in Advanced Diffuse Large B-Cell Lymphoma. Journal of Nuclear Medicine, 2019, 60, 60-64.	5.0	62
54	O-(2-(¹⁸ F)fluoroethyl)-L-tyrosine PET for the differentiation of tumour recurrence from late pseudoprogression in glioblastoma. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 238-239.	1.9	30

#	Article	IF	CITATIONS
55	CXCR4-Directed Imaging in Solid Tumors. Frontiers in Oncology, 2019, 9, 770.	2.8	47
56	Imaging cardiac sympathetic innervation with MIBG: linear conversion of the heart-to-mediastinum ratio between different collimators. EJNMMI Physics, 2019, 6, 12.	2.7	8
57	[68Ga]-Pentixafor PET/CT for CXCR4-Mediated Imaging of Vestibular Schwannomas. Frontiers in Oncology, 2019, 9, 503.	2.8	15
58	Exciting Opportunities in Nuclear Medicine Imaging and Therapy. Journal of Clinical Medicine, 2019, 8, 1944.	2.4	1
59	The next era of renal radionuclide imaging: novel PET radiotracers. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1773-1786.	6.4	32
60	Visual and Semiquantitative Accuracy in Clinical Baseline 1231-Ioflupane SPECT/CT Imaging. Clinical Nuclear Medicine, 2019, 44, 1-3.	1.3	6
61	DNA damage in blood leucocytes of prostate cancer patients during therapy with 177Lu-PSMA. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1723-1732.	6.4	13
62	Side Effects of CXC-Chemokine Receptor 4–Directed Endoradiotherapy with Pentixather Before Hematopoietic Stem Cell Transplantation. Journal of Nuclear Medicine, 2019, 60, 1399-1405.	5.0	37
63	Prognostic Value of O-(2-[18F]Fluoroethyl)-L-Tyrosine PET/CT in Newly Diagnosed WHO 2016 Grade II and III Glioma. Molecular Imaging and Biology, 2019, 21, 1174-1181.	2.6	7
64	Novel Structured Reporting Systems for Theranostic Radiotracers. Journal of Nuclear Medicine, 2019, 60, 577-584.	5.0	24
65	Detection of cardiac amyloidosis with 18F-Florbetaben-PET/CT in comparison to echocardiography, cardiac MRI and DPD-scintigraphy. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1407-1416.	6.4	73
66	From the Reading Room to the Courtroom—The Use of Molecular Radionuclide Imaging in Criminal Trials. Journal of the American College of Radiology, 2019, 16, 1612-1617.	1.8	1
67	Impact of aging on semiquantitative uptake parameters in normal rated clinical baseline [123I]Ioflupane single photon emission computed tomography/computed tomography. Nuclear Medicine Communications, 2019, 40, 1001-1004.	1.1	5
68	Ventricular Distribution Pattern of the Novel Sympathetic Nerve PET Radiotracer 18F-LMI1195 in Rabbit Hearts. Scientific Reports, 2019, 9, 17026.	3.3	2
69	Comparison of 11C-Choline and 11C-Methionine PET/CT in Multiple Myeloma. Clinical Nuclear Medicine, 2019, 44, 620-624.	1.3	30
70	Clinical Utility of Different Approaches for Detection of Late Pseudoprogression in Glioblastoma With O-(2-[18F]Fluoroethyl)-l-Tyrosine PET. Clinical Nuclear Medicine, 2019, 44, 695-701.	1.3	14
71	Volumetric and texture analysis of pretherapeutic 18F-FDG PET can predict overall survival in medullary thyroid cancer patients treated with Vandetanib. Endocrine, 2019, 63, 293-300.	2.3	13
72	Hexokinase-2 Expression in ¹¹ C-Methionine–Positive, ¹⁸ F-FDG–Negative Multiple Myeloma. Journal of Nuclear Medicine, 2019, 60, 348-352.	5.0	21

#	Article	IF	CITATIONS
73	Impact of Tumor Burden on Quantitative [68Ga] DOTATOC Biodistribution. Molecular Imaging and Biology, 2019, 21, 790-798.	2.6	10
74	Tiger man sign in sarcoid myopathy. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1039-1040.	6.4	1
75	Effect of blood glucose level on standardized uptake value (SUV) in 18F- FDG PET-scan: a systematic review and meta-analysis of 20,807 individual SUV measurements. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 224-237.	6.4	66
76	Moving into the next era of PET myocardial perfusion imaging: introduction of novel 18F-labeled tracers. International Journal of Cardiovascular Imaging, 2019, 35, 569-577.	1.5	32
77	PET imaging of noradrenaline transporters in Parkinson's disease: focus on scan time. Annals of Nuclear Medicine, 2019, 33, 69-77.	2.2	10
78	Potential influence of concomitant chemotherapy on <scp>CXCR</scp> 4 expression in receptor directed endoradiotherapy. British Journal of Haematology, 2019, 184, 440-443.	2.5	25
79	Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. Journal of Clinical Investigation, 2019, 129, 4922-4936.	8.2	109
80	Imaging of C-X-C Motif Chemokine Receptor CXCR4 Expression After Myocardial Infarction With [68Ga]Pentixafor-PET/CT in Correlation WithÂCardiac MRI. JACC: Cardiovascular Imaging, 2018, 11, 1541-1543.	5.3	42
81	Impact of Novel Antidepressants on Cardiac ¹²³ I-Metaiodobenzylguanidine Uptake: Experimental Studies on SK-N-SH Cells and Healthy Rabbits. Journal of Nuclear Medicine, 2018, 59, 1099-1103.	5.0	10
82	Prognostic value of [18F]FDG-PET/CT in multiple myeloma patients before and after allogeneic hematopoietic cell transplantation. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 1694-1704.	6.4	23
83	It's the Metabolism That Makes Macrophages Detectable in the Magnetic Resonance Scanner. Circulation Research, 2018, 122, 1039-1040.	4.5	0
84	SSTR-RADS Version 1.0 as a Reporting System for SSTR PET Imaging and Selection of Potential PRRT Candidates: A Proposed Standardization Framework. Journal of Nuclear Medicine, 2018, 59, 1085-1091.	5.0	58
85	[¹¹ C]Methionine emerges as a new biomarker for tracking active myeloma lesions. British Journal of Haematology, 2018, 181, 701-703.	2.5	13
86	Dose Mapping After Endoradiotherapy with ¹⁷⁷ Lu-DOTATATE/DOTATOC by a Single Measurement After 4 Days. Journal of Nuclear Medicine, 2018, 59, 75-81.	5.0	125
87	Predictive Value of ¹⁸ F-FDG PET in Patients with Advanced Medullary Thyroid Carcinoma Treated with Vandetanib. Journal of Nuclear Medicine, 2018, 59, 756-761.	5.0	26
88	Left Ventricular Diastolic Dysfunction in a Rat Model of Diabetic Cardiomyopathy using ECG-gated 18F-FDG PET. Scientific Reports, 2018, 8, 17631.	3.3	3
89	The theranostic promise for Neuroendocrine Tumors in the late 2010s - Where do we stand, where do we go?. Theranostics, 2018, 8, 6088-6100.	10.0	59
90	Peptide receptor radionuclide therapy as a new tool in treatment-refractory sarcoidosis - initial experience in two patients. Theranostics, 2018, 8, 644-649.	10.0	11

#	Article	IF	CITATIONS
91	Chemokine Receptor 4 Expression in Primary Sjögren's Syndrome. Clinical Nuclear Medicine, 2018, 43, 835-836.	1.3	13
92	Interobserver Agreement for the Standardized Reporting System PSMA-RADS 1.0 on ¹⁸ F-DCFPyL PET/CT Imaging. Journal of Nuclear Medicine, 2018, 59, 1857-1864.	5.0	43
93	Anti-Inflammatory Effects on Atherosclerotic Lesions Induced by CXCR4-Directed Endoradiotherapy. Journal of the American College of Cardiology, 2018, 72, 122-123.	2.8	10
94	CXCR4-Directed Endoradiotherapy as New Treatment Option in Advanced Multiple Myeloma. , 2018, , 475-481.		0
95	Subcellular storage and release mode of the novel 18F-labeled sympathetic nerve PET tracer LMI1195. EJNMMI Research, 2018, 8, 12.	2.5	11
96	The Impact of Ageing on 11C-Hydroxyephedrine Uptake in the Rat Heart. Scientific Reports, 2018, 8, 11120.	3.3	12
97	CXCR4-directed theranostics in oncology and inflammation. Annals of Nuclear Medicine, 2018, 32, 503-511.	2.2	98
98	Dual Targeting of Acute Leukemia and Supporting Niche by CXCR4-Directed Theranostics. Theranostics, 2018, 8, 369-383.	10.0	68
99	SPECT vs. PET in cardiac innervation imaging: clash of the titans. Clinical and Translational Imaging, 2018, 6, 293-303.	2.1	19
100	Molecular imaging reporting and data systems (MI-RADS): a generalizable framework for targeted radiotracers with theranostic implications. Annals of Nuclear Medicine, 2018, 32, 512-522.	2.2	37
101	The gross picture: intraindividual tumour heterogeneity in a patient with nonsecretory multiple myeloma. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 1097-1098.	6.4	11
102	Novel Noninvasive Nuclear Medicine Imaging Techniques for Cardiac Inflammation. Current Cardiovascular Imaging Reports, 2017, 10, 6.	0.6	41
103	Investigating the Chemokine Receptor 4 as Potential Theranostic Target in Adrenocortical Cancer Patients. Clinical Nuclear Medicine, 2017, 42, e29-e34.	1.3	60
104	Intraindividual tumor heterogeneity in NET – Further insight by C-X-C motif chemokine receptor 4-directed imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 553-554.	6.4	10
105	New horizons in cardiac innervation imaging: introduction of novel 18F-labeled PET tracers. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 2302-2309.	6.4	21
106	Chemokine receptor $\hat{a} \in $ Directed imaging and therapy. Methods, 2017, 130, 63-71.	3.8	45
107	CXCR4 Ligands: The Next Big Hit?. Journal of Nuclear Medicine, 2017, 58, 77S-82S.	5.0	118
108	Whitening and Impaired Glucose Utilization of Brown Adipose Tissue in a Rat Model of Type 2 Diabetes Mellitus. Scientific Reports, 2017, 7, 16795.	3.3	42

#	Article	IF	CITATIONS
109	[⁶⁸ Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma - Comparison to [¹⁸ F]FDG and laboratory values. Theranostics, 2017, 7, 205-212.	10.0	138
110	¹¹ C-Methionine-PET in Multiple Myeloma: A Combined Study from Two Different Institutions. Theranostics, 2017, 7, 2956-2964.	10.0	63
111	Patterns of uptake of prostate-specific membrane antigen (PSMA)-targeted 18F-DCFPyL in peripheral ganglia. Annals of Nuclear Medicine, 2017, 31, 696-702.	2.2	34
112	Survival prediction in patients undergoing radionuclide therapy based on intratumoral somatostatin-receptor heterogeneity. Oncotarget, 2017, 8, 7039-7049.	1.8	54
113	CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed Multiple Myeloma. Theranostics, 2017, 7, 1589-1597.	10.0	102
114	Imaging of Chemokine Receptor 4 Expression in Neuroendocrine Tumors - a Triple Tracer Comparative Approach. Theranostics, 2017, 7, 1489-1498.	10.0	82
115	Targeting CXCR4 with [68Ga]Pentixafor: a suitable theranostic approach in pleural mesothelioma?. Oncotarget, 2017, 8, 96732-96737.	1.8	17
116	Somatostatin receptor based PET/CT in patients with the suspicion of cardiac sarcoidosis: an initial comparison to cardiac MRI. Oncotarget, 2016, 7, 77807-77814.	1.8	79
117	¹¹ C-Methionine-PET in Multiple Myeloma: Correlation with Clinical Parameters and Bone Marrow Involvement. Theranostics, 2016, 6, 254-261.	10.0	80
118	⁶⁸ Ga-Pentixafor-PET/CT for Imaging of Chemokine Receptor 4 Expression in Glioblastoma. Theranostics, 2016, 6, 428-434.	10.0	91
119	Peptide Receptor Radionuclide Therapy for Sarcoidosis. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1428-1430.	5.6	7
120	Assessment of tumor heterogeneity in treatment-naÃ ⁻ ve adrenocortical cancer patients using 18F-FDG positron emission tomography. Endocrine, 2016, 53, 791-800.	2.3	8
121	Initial Preclinical Evaluation of ¹⁸ F-Fluorodeoxysorbitol PET as a Novel Functional Renal Imaging Agent. Journal of Nuclear Medicine, 2016, 57, 1625-1628.	5.0	26
122	[⁶⁸ Ga]Pentixafor–Positron Emission Tomography/Computed Tomography Detects Chemokine Receptor CXCR4 Expression After Ischemic Stroke. Circulation: Cardiovascular Imaging, 2016, 9, e005217.	2.6	15
123	¹¹ C-Methionine PET of Myocardial Inflammation in a Rat Model of Experimental Autoimmune Myocarditis. Journal of Nuclear Medicine, 2016, 57, 1985-1990.	5.0	38
124	DNA Damage in Peripheral Blood Lymphocytes of Thyroid Cancer Patients After Radioiodine Therapy. Journal of Nuclear Medicine, 2016, 57, 173-179.	5.0	49
125	First-in-Human Experience of CXCR4-Directed Endoradiotherapy with ¹⁷⁷ Lu- and ⁹⁰ Y-Labeled Pentixather in Advanced-Stage Multiple Myeloma with Extensive Intra- and Extramedullary Disease. Journal of Nuclear Medicine, 2016, 57, 248-251.	5.0	201
126	Sympathetic nerve damage and restoration after ischemia-reperfusion injury as assessed by 11C-hydroxyephedrine. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 312-318.	6.4	14

#	Article	IF	CITATIONS
127	Visualization of tumor heterogeneity in neuroendocrine tumors by positron emission tomography. Endocrine, 2016, 51, 556-557.	2.3	7
128	[68Ca]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer - initial experience. Oncotarget, 2016, 7, 9288-9295.	1.8	92
129	Somatostatin receptor expression in small cell lung cancer as a prognostic marker and a target for peptide receptor radionuclide therapy. Oncotarget, 2016, 7, 20033-20040.	1.8	41
130	<i>In vivo</i> molecular imaging of chemokine receptor <scp>CXCR</scp> 4 expression in patients with advanced multiple myeloma. EMBO Molecular Medicine, 2015, 7, 477-487.	6.9	180
131	11C-Methionine-PET: A novel and sensitive tool for monitoring of early response to treatment in multiple myeloma. Oncotarget, 2015, 6, 8418-8429.	1.8	38
132	Tumor-Associated Macrophages in Glioblastoma Multiforme—A Suitable Target for Somatostatin Receptor-Based Imaging and Therapy?. PLoS ONE, 2015, 10, e0122269.	2.5	31
133	Imaging of myocardial inflammation with somatostatin receptor based PET/CT — A comparison to cardiac MRI. International Journal of Cardiology, 2015, 194, 44-49.	1.7	86
134	[68Ga]Pentixafor-PET/CT for Imaging ofÂChemokine Receptor 4 Expression After Myocardial Infarction. JACC: Cardiovascular Imaging, 2015, 8, 1466-1468.	5.3	56
135	Prognostic value of positron emission tomography-assessed tumor heterogeneity in patients with thyroid cancer undergoing treatment with radiopeptide therapy. Nuclear Medicine and Biology, 2015, 42, 349-354.	0.6	40
136	Biodistribution and Radiation Dosimetry for the Chemokine Receptor CXCR4-Targeting Probe ⁶⁸ Ga-Pentixafor. Journal of Nuclear Medicine, 2015, 56, 410-416.	5.0	108
137	Activation of brown adipose tissue in hypothyroidism. Annals of Medicine, 2015, 47, 538-545.	3.8	16
138	Retention Kinetics of the ¹⁸ F-Labeled Sympathetic Nerve PET Tracer LMI1195: Comparison with ¹¹ C-Hydroxyephedrine and ¹²³ I-MIBG. Journal of Nuclear Medicine, 2015, 56, 1429-1433.	5.0	66
139	Detection of cardiac sarcoidosis by macrophage-directed somatostatin receptor 2-based positron emission tomography/computed tomography:. European Heart Journal, 2015, 36, 2404-2404.	2.2	34
140	Three-Phase Bone Scintigraphy for Imaging Osteoradionecrosis of the Jaw. Clinical Nuclear Medicine, 2014, 39, 21-25.	1.3	13
141	Comparison of the Amino Acid Tracers ¹⁸ F-FET and ¹⁸ F-DOPA in High-Grade Glioma Patients. Journal of Nuclear Medicine, 2014, 55, 1611-1616.	5.0	90
142	18FDG-PET/CT for prognostic stratification of patients with multiple myeloma relapse after stem cell transplantation. Oncotarget, 2014, 5, 7381-7391.	1.8	56
143	Targeting Paraprotein Biosynthesis for Non-Invasive Characterization of Myeloma Biology. PLoS ONE, 2013, 8, e84840.	2.5	28
144	68Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with18F-FDG, calcium burden and risk factors. EJNMMI Research, 2012, 2, 52.	2.5	107

#	Article	IF	CITATIONS
145	The impact of 177Lu-octreotide therapy on 99mTc-MAG3 clearance is not predictive for late nephropathy. Oncotarget, 0, 7, 41233-41241.	1.8	16
146	CXCR4 expression of multiple myeloma as a dynamic process: influence of therapeutic agents. Leukemia and Lymphoma, 0, , 1-10.	1.3	0