
Liming Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1214317/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science, 2009, 323, 760-764.	6.0	6,535
2	Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano, 2010, 4, 1321-1326.	7.3	3,658
3	A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nature Nanotechnology, 2015, 10, 444-452.	15.6	2,782
4	Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 2015, 115, 4823-4892.	23.0	2,083
5	Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups. Journal of the American Chemical Society, 2012, 134, 15-18.	6.6	1,832
6	Plasmaâ€Engraved Co ₃ O ₄ Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2016, 55, 5277-5281.	7.2	1,646
7	Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nature Nanotechnology, 2014, 9, 555-562.	15.6	1,312
8	Carbon Nanomaterials for Advanced Energy Conversion and Storage. Small, 2012, 8, 1130-1166.	5.2	1,304
9	Defect Chemistry of Nonpreciousâ€Metal Electrocatalysts for Oxygen Reactions. Advanced Materials, 2017, 29, 1606459.	11.1	1,260
10	BCN Graphene as Efficient Metalâ€Free Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2012, 51, 4209-4212.	7.2	1,119
11	Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Science Advances, 2016, 2, e1501122.	4.7	1,078
12	Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors. Journal of Physical Chemistry Letters, 2010, 1, 467-470.	2.1	1,073
13	Carbon-based metal-free catalysts. Nature Reviews Materials, 2016, 1, .	23.3	1,042
14	Power generation with laterally packaged piezoelectric fine wires. Nature Nanotechnology, 2009, 4, 34-39.	15.6	859
15	Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chemical Communications, 2012, 48, 7955.	2.2	830
16	Highâ€Performance Sodium Ion Batteries Based on a 3D Anode from Nitrogenâ€Doped Graphene Foams. Advanced Materials, 2015, 27, 2042-2048.	11.1	812
17	Polyaniline-Grafted Reduced Graphene Oxide for Efficient Electrochemical Supercapacitors. ACS Nano, 2012, 6, 1715-1723.	7.3	807
18	Etched and doped Co ₉ S ₈ /graphene hybrid for oxygen electrocatalysis. Energy and Environmental Science, 2016, 9, 1320-1326.	15.6	774

#	Article	IF	CITATIONS
19	N,Pâ€Codoped Carbon Networks as Efficient Metalâ€free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Angewandte Chemie - International Edition, 2016, 55, 2230-2234.	7.2	748
20	Functionalization of Graphene for Efficient Energy Conversion and Storage. Accounts of Chemical Research, 2013, 46, 31-42.	7.6	739
21	Vertically Aligned BCN Nanotubes as Efficient Metalâ€Free Electrocatalysts for the Oxygen Reduction Reaction: A Synergetic Effect by Coâ€Doping with Boron and Nitrogen. Angewandte Chemie - International Edition, 2011, 50, 11756-11760.	7.2	725
22	Polyelectrolyte Functionalized Carbon Nanotubes as Efficient Metal-free Electrocatalysts for Oxygen Reduction. Journal of the American Chemical Society, 2011, 133, 5182-5185.	6.6	678
23	Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off. Science, 2008, 322, 238-242.	6.0	674
24	Polyelectrolyte-Functionalized Graphene as Metal-Free Electrocatalysts for Oxygen Reduction. ACS Nano, 2011, 5, 6202-6209.	7.3	672
25	Biocompatible Graphene Oxide-Based Glucose Biosensors. Langmuir, 2010, 26, 6158-6160.	1.6	668
26	Novel MOFâ€Derived Co@N Bifunctional Catalysts for Highly Efficient Zn–Air Batteries and Water Splitting. Advanced Materials, 2018, 30, 1705431.	11.1	667
27	Carbon-based supercapacitors for efficient energy storage. National Science Review, 2017, 4, 453-489.	4.6	651
28	Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy, 2016, 29, 83-110.	8.2	650
29	Carbonâ€Based Metalâ€Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future. Advanced Materials, 2019, 31, e1804799.	11.1	649
30	Are Diamond Nanoparticles Cytotoxic?. Journal of Physical Chemistry B, 2007, 111, 2-7.	1.2	641
31	Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy, 2012, 1, 534-551.	8.2	628
32	Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Znâ€Air Batteries. Advanced Materials, 2016, 28, 3000-3006.	11.1	626
33	Highly Efficient Metal-Free Growth of Nitrogen-Doped Single-Walled Carbon Nanotubes on Plasma-Etched Substrates for Oxygen Reduction. Journal of the American Chemical Society, 2010, 132, 15127-15129.	6.6	608
34	Multifunctional Carbonâ€Based Metalâ€Free Electrocatalysts for Simultaneous Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution. Advanced Materials, 2017, 29, 1604942.	11.1	606
35	Carbonâ€Based Metalâ€Free Catalysts for Electrocatalysis beyond the ORR. Angewandte Chemie - International Edition, 2016, 55, 11736-11758.	7.2	598
36	Edge-carboxylated graphene nanosheets via ball milling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5588-5593.	3.3	595

#	Article	IF	CITATIONS
37	N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Science Advances, 2015, 1, e1400129.	4.7	583
38	Nitrogenâ€Doped Graphene Foams as Metalâ€Free Counter Electrodes in Highâ€Performance Dyeâ€&ensitized Solar Cells. Angewandte Chemie - International Edition, 2012, 51, 12124-12127.	7.2	581
39	Carbon nanomaterials for high-performance supercapacitors. Materials Today, 2013, 16, 272-280.	8.3	581
40	Large-Scale Production of Edge-Selectively Functionalized Graphene Nanoplatelets via Ball Milling and Their Use as Metal-Free Electrocatalysts for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013, 135, 1386-1393.	6.6	578
41	Carbon-based electrocatalysts for advanced energy conversion and storage. Science Advances, 2015, 1, e1500564.	4.7	567
42	Electrocatalysis for CO ₂ conversion: from fundamentals to value-added products. Chemical Society Reviews, 2021, 50, 4993-5061.	18.7	559
43	Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chemical Communications, 2016, 52, 2764-2767.	2.2	547
44	Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size-Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012, 134, 18932-18935.	6.6	545
45	Nitrogen Enriched Porous Carbon Spheres: Attractive Materials for Supercapacitor Electrodes and CO ₂ Adsorption. Chemistry of Materials, 2014, 26, 2820-2828.	3.2	539
46	Edge‣electively Sulfurized Graphene Nanoplatelets as Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect. Advanced Materials, 2013, 25, 6138-6145.	11.1	537
47	Metal-Free Carbon Nanomaterials Become More Active than Metal Catalysts and Last Longer. Journal of Physical Chemistry Letters, 2010, 1, 2165-2173.	2.1	529
48	Nitrogen-doped Ti 3 C 2 T x MXene electrodes for high-performance supercapacitors. Nano Energy, 2017, 38, 368-376.	8.2	528
49	Nitrogen, Phosphorus, and Fluorine Triâ€doped Graphene as a Multifunctional Catalyst for Selfâ€Powered Electrochemical Water Splitting. Angewandte Chemie - International Edition, 2016, 55, 13296-13300.	7.2	517
50	Heteroatom-Doped Graphitic Carbon Catalysts for Efficient Electrocatalysis of Oxygen Reduction Reaction. ACS Catalysis, 2015, 5, 7244-7253.	5.5	500
51	Design Principles for Heteroatomâ€Đoped Carbon Nanomaterials as Highly Efficient Catalysts for Fuel Cells and Metal–Air Batteries. Advanced Materials, 2015, 27, 6834-6840.	11.1	490
52	Plasmaâ€Engraved Co ₃ O ₄ Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. Angewandte Chemie, 2016, 128, 5363-5367.	1.6	472
53	Efficient Oxygen Reduction Reaction (ORR) Catalysts Based on Single Iron Atoms Dispersed on a Hierarchically Structured Porous Carbon Framework. Angewandte Chemie - International Edition, 2018, 57, 9038-9043.	7.2	467
54	Soluble P3HT-Grafted Graphene for Efficient Bilayerâ^'Heterojunction Photovoltaic Devices. ACS Nano, 2010, 4, 5633-5640.	7.3	451

#	Article	IF	CITATIONS
55	The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Scientific Reports, 2013, 3, 2248.	1.6	432
56	Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nature Catalysis, 2019, 2, 688-695.	16.1	423
57	Highly Efficient Electrocatalysts for Oxygen Reduction Based on 2D Covalent Organic Polymers Complexed with Nonâ€precious Metals. Angewandte Chemie - International Edition, 2014, 53, 2433-2437.	7.2	417
58	A general approach to cobalt-based homobimetallic phosphide ultrathin nanosheets for highly efficient oxygen evolution in alkaline media. Energy and Environmental Science, 2017, 10, 893-899.	15.6	412
59	Oxygen Reduction Reaction in a Droplet on Graphite: Direct Evidence that the Edge Is More Active than the Basal Plane. Angewandte Chemie - International Edition, 2014, 53, 10804-10808.	7.2	410
60	Transparent and Stretchable High-Performance Supercapacitors Based on Wrinkled Graphene Electrodes. ACS Nano, 2014, 8, 1039-1046.	7.3	406
61	Flexible supercapacitors based on carbon nanomaterials. Journal of Materials Chemistry A, 2014, 2, 10756.	5.2	402
62	Preparation of Tunable 3D Pillared Carbon Nanotube–Graphene Networks for High-Performance Capacitance. Chemistry of Materials, 2011, 23, 4810-4816.	3.2	367
63	Doping of Carbon Materials for Metalâ€Free Electrocatalysis. Advanced Materials, 2019, 31, e1804672.	11.1	361
64	Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Composites Science and Technology, 2009, 69, 898-904.	3.8	358
65	DNA Damage Induced by Multiwalled Carbon Nanotubes in Mouse Embryonic Stem Cells. Nano Letters, 2007, 7, 3592-3597.	4.5	351
66	Reduced Graphene Oxide Membranes for Ultrafast Organic Solvent Nanofiltration. Advanced Materials, 2016, 28, 8669-8674.	11.1	349
67	High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. Journal of Power Sources, 2009, 189, 1270-1277.	4.0	336
68	Sulfurâ€Doped Graphene Derived from Cycled Lithium–Sulfur Batteries as a Metalâ€Free Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2015, 54, 1888-1892.	7.2	328
69	Controlled Synthesis and Modification of Carbon Nanotubes and C60: Carbon Nanostructures for Advanced Polymeric Composite Materials. Advanced Materials, 2001, 13, 899-913.	11.1	323
70	Differential biocompatibility of carbon nanotubes and nanodiamonds. Diamond and Related Materials, 2007, 16, 2118-2123.	1.8	312
71	Textile electrodes woven by carbon nanotube–graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale, 2013, 5, 3428.	2.8	307
72	Conducting Polyaniline Nanotubes by Template-Free Polymerization. Macromolecules, 2001, 34, 675-677.	2.2	304

#	Article	IF	CITATIONS
73	Newlyâ€Designed Complex Ternary Pt/PdCu Nanoboxes Anchored on Threeâ€Dimensional Graphene Framework for Highly Efficient Ethanol Oxidation. Advanced Materials, 2012, 24, 5493-5498.	11.1	301
74	Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Scientific Reports, 2013, 3, 1810.	1.6	300
75	N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy, 2018, 49, 393-402.	8.2	300
76	Magnetic Liquid Marbles: A "Precise―Miniature Reactor. Advanced Materials, 2010, 22, 4814-4818.	11.1	298
77	Vertically Aligned Carbon Nanotube Arrays Co-doped with Phosphorus and Nitrogen as Efficient Metal-Free Electrocatalysts for Oxygen Reduction. Journal of Physical Chemistry Letters, 2012, 3, 2863-2870.	2.1	294
78	3-D Carbon Nanotube Structures Used as High Performance Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2010, 132, 15839-15841.	6.6	293
79	Nitrogenâ€Đoped Holey Graphitic Carbon from 2D Covalent Organic Polymers for Oxygen Reduction. Advanced Materials, 2014, 26, 3315-3320.	11.1	292
80	Substrate-Enhanced Electroless Deposition of Metal Nanoparticles on Carbon Nanotubes. Journal of the American Chemical Society, 2005, 127, 10806-10807.	6.6	291
81	Multifunctional Chemical Vapor Sensors of Aligned Carbon Nanotube and Polymer Composites. Journal of the American Chemical Society, 2006, 128, 1412-1413.	6.6	285
82	Patterned Growth and Contact Transfer of Well-Aligned Carbon Nanotube Films. Journal of Physical Chemistry B, 1999, 103, 4223-4227.	1.2	284
83	Three-dimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction. Physical Chemistry Chemical Physics, 2013, 15, 12220.	1.3	284
84	2D Frameworks of C ₂ N and C ₃ N as New Anode Materials for Lithiumâ€lon Batteries. Advanced Materials, 2017, 29, 1702007.	11.1	282
85	Polyaniline Nanotubes Doped with Sulfonated Carbon Nanotubes Made Via a Self-Assembly Process. Advanced Materials, 2003, 15, 136-139.	11.1	279
86	Effect of Microstructure of Nitrogen-Doped Graphene on Oxygen Reduction Activity in Fuel Cells. Langmuir, 2012, 28, 7542-7550.	1.6	279
87	Hole and Electron Extraction Layers Based on Graphene Oxide Derivatives for Highâ€Performance Bulk Heterojunction Solar Cells. Advanced Materials, 2012, 24, 2228-2233.	11.1	279
88	Biosensors Based on Aligned Carbon Nanotubes Coated with Inherently Conducting Polymers. Electroanalysis, 2003, 15, 1089-1094.	1.5	278
89	Carbonâ€Based Metalâ€Free Catalysts for Key Reactions Involved in Energy Conversion and Storage. Advanced Materials, 2019, 31, e1801526.	11.1	273
90	Facile Synthesis of Black Phosphorus: an Efficient Electrocatalyst for the Oxygen Evolving Reaction. Angewandte Chemie - International Edition, 2016, 55, 13849-13853.	7.2	269

#	Article	IF	CITATIONS
91	One-step coating of fluoro-containing silicananoparticles for universal generation of surface superhydrophobicity. Chemical Communications, 2008, , 877-879.	2.2	266
92	Hierarchical composites of carbon nanotubes on carbon fiber: Influence of growth condition on fiber tensile properties. Composites Science and Technology, 2009, 69, 594-601.	3.8	266
93	Plasma Activation of Carbon Nanotubes for Chemical Modification. Journal of Physical Chemistry B, 2001, 105, 618-622.	1.2	265
94	Graphene Quantum Dots Supported by Graphene Nanoribbons with Ultrahigh Electrocatalytic Performance for Oxygen Reduction. Journal of the American Chemical Society, 2015, 137, 7588-7591.	6.6	262
95	Efficiently photo-charging lithium-ion battery by perovskite solar cell. Nature Communications, 2015, 6, 8103.	5.8	261
96	Highly Rechargeable Lithiumâ€CO ₂ Batteries with a Boron―and Nitrogenâ€Codoped Holeyâ€Graphene Cathode. Angewandte Chemie - International Edition, 2017, 56, 6970-6974.	7.2	260
97	Porous Core–Shell Fe ₃ C Embedded N-doped Carbon Nanofibers as an Effective Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 4118-4125.	4.0	256
98	Solid‣tate Rechargeable Zn//NiCo and Zn–Air Batteries with Ultralong Lifetime and High Capacity: The Role of a Sodium Polyacrylate Hydrogel Electrolyte. Advanced Energy Materials, 2018, 8, 1802288.	10.2	253
99	High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets. Scientific Reports, 2014, 4, 3612.	1.6	252
100	Two-birds-one-stone: multifunctional supercapacitors beyond traditional energy storage. Energy and Environmental Science, 2021, 14, 1854-1896.	15.6	252
101	Structure and growth of aligned carbon nanotube films by pyrolysis. Chemical Physics Letters, 2000, 316, 349-355.	1.2	248
102	Ultrathin Black Phosphorus-on-Nitrogen Doped Graphene for Efficient Overall Water Splitting: Dual Modulation Roles of Directional Interfacial Charge Transfer. Journal of the American Chemical Society, 2019, 141, 4972-4979.	6.6	247
103	Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn-air batteries. Nano Energy, 2019, 60, 536-544.	8.2	247
104	An Asymmetrically Surface-Modified Graphene Film Electrochemical Actuator. ACS Nano, 2010, 4, 6050-6054.	7.3	242
105	Vertically Aligned N-Doped Coral-like Carbon Fiber Arrays as Efficient Air Electrodes for High-Performance Nonaqueous Li–O ₂ Batteries. ACS Nano, 2014, 8, 3015-3022.	7.3	242
106	Aligned Coaxial Nanowires of Carbon Nanotubes Sheathed with Conducting Polymers. Angewandte Chemie - International Edition, 2000, 39, 3664-3667.	7.2	235
107	Functionalization of Graphene Oxide with Polyhedral Oligomeric Silsesquioxane (POSS) for Multifunctional Applications. Journal of Physical Chemistry Letters, 2012, 3, 1607-1612.	2.1	234
108	Harnessing the interplay of Fe–Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy, 2020, 71, 104597.	8.2	231

#	Article	IF	CITATIONS
109	N,Pâ€Codoped Carbon Networks as Efficient Metalâ€free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Angewandte Chemie, 2016, 128, 2270-2274.	1.6	224
110	Recent Advances in Carbonâ€Based Metalâ€Free Electrocatalysts. Advanced Materials, 2019, 31, e1806403.	11.1	222
111	Cathode materials for next generation lithium ion batteries. Nano Energy, 2013, 2, 439-442.	8.2	221
112	C ₆₀ -Adsorbed Single-Walled Carbon Nanotubes as Metal-Free, pH-Universal, and Multifunctional Catalysts for Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution. Journal of the American Chemical Society, 2019, 141, 11658-11666.	6.6	220
113	Can silver nanoparticles be useful as potential biological labels?. Nanotechnology, 2008, 19, 235104.	1.3	218
114	Novel Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]dithiophene–Benzothiadiazole Derivatives with Variable Side Chains for Highâ€Performance Solar Cells. Advanced Materials, 2011, 23, 4554-4558.	11.1	217
115	Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices. Journal of Physical Chemistry Letters, 2011, 2, 1113-1118.	2.1	216
116	Sulfur–Graphene Nanostructured Cathodes <i>via</i> Ball-Milling for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2014, 8, 10920-10930.	7.3	213
117	Electrospun polymer nanofiber sensors. Synthetic Metals, 2005, 154, 37-40.	2.1	211
118	Layerâ€byâ€Layer Growth of CH ₃ NH ₃ PbI _{3â^'<i>x</i>} Cl _{<i>x</i>} for Highly Efficient Planar Heterojunction Perovskite Solar Cells. Advanced Materials, 2015, 27, 1053-1059.	11.1	211
119	Chemistry of Carbon Nanotubes. Australian Journal of Chemistry, 2003, 56, 635.	0.5	209
120	Highly Efficient Binding of DNA on the Sidewalls and Tips of Carbon Nanotubes Using Photochemistry. Nano Letters, 2004, 4, 89-93.	4.5	209
121	Heteroatom-doped carbon catalysts for zinc–air batteries: progress, mechanism, and opportunities. Energy and Environmental Science, 2020, 13, 4536-4563.	15.6	209
122	Functional graphene nanomesh foam. Energy and Environmental Science, 2014, 7, 1913.	15.6	206
123	Preferential Syntheses of Semiconducting Vertically Aligned Single-Walled Carbon Nanotubes for Direct Use in FETs. Nano Letters, 2008, 8, 2682-2687.	4.5	205
124	Vertically Aligned BCN Nanotubes with High Capacitance. ACS Nano, 2012, 6, 5259-5265.	7.3	204
125	Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Scientific Reports, 2013, 3, 2260.	1.6	204
126	Shape/Size-Controlled Syntheses of Metal Nanoparticles for Site-Selective Modification of Carbon Nanotubes. Journal of the American Chemical Society, 2006, 128, 5523-5532.	6.6	203

#	Article	IF	CITATIONS
127	DNA-Directed Self-Assembling of Carbon Nanotubes. Journal of the American Chemical Society, 2005, 127, 14-15.	6.6	202
128	Geckoâ€Footâ€Mimetic Aligned Singleâ€Walled Carbon Nanotube Dry Adhesives with Unique Electrical and Thermal Properties. Advanced Materials, 2007, 19, 3844-3849.	11.1	202
129	Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nature Communications, 2018, 9, 3819.	5.8	202
130	Carbon nanomaterials as metal-free catalysts in next generation fuel cells. Nano Energy, 2012, 1, 514-517.	8.2	198
131	3D Heteroatomâ€Doped Carbon Nanomaterials as Multifunctional Metalâ€Free Catalysts for Integrated Energy Devices. Advanced Materials, 2019, 31, e1805598.	11.1	194
132	Well-defined two dimensional covalent organic polymers: rational design, controlled syntheses, and potential applications. Polymer Chemistry, 2015, 6, 1896-1911.	1.9	189
133	Carbonâ€Based Metalâ€Free Catalysts for Energy Storage and Environmental Remediation. Advanced Materials, 2019, 31, e1806128.	11.1	188
134	Nanodiamonds for nanomedicine. Nanomedicine, 2009, 4, 207-218.	1.7	187
135	Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker. Chemical Physics Letters, 2003, 367, 747-752.	1.2	186
136	Aligned Nanotubes. ChemPhysChem, 2003, 4, 1150-1169.	1.0	180
137	Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energy and Environmental Science, 2014, 7, 1297-1306.	15.6	180
138	Sensors and sensor arrays based on conjugated polymers and carbon nanotubes. Pure and Applied Chemistry, 2002, 74, 1753-1772.	0.9	178
139	Directional water-transfer through fabrics induced by asymmetric wettability. Journal of Materials Chemistry, 2010, 20, 7938.	6.7	178
140	Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications. Chemical Communications, 2011, 47, 11689.	2.2	177
141	Carbon Nanotubols from Mechanochemical Reaction. Nano Letters, 2003, 3, 29-32.	4.5	176
142	PVK-Modified Single-Walled Carbon Nanotubes with Effective Photoinduced Electron Transfer. Macromolecules, 2003, 36, 6286-6288.	2.2	176
143	Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage. Science Advances, 2015, 1, e1400198.	4.7	176
144	A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry. Nature Communications, 2017, 8, 527.	5.8	176

#	Article	IF	CITATIONS
145	Carbon-Defect-Driven Electroless Deposition of Pt Atomic Clusters for Highly Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2020, 142, 5594-5601.	6.6	175
146	Edgeâ€Fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dyeâ€Sensitized Solar Cells and Lithium Ion Batteries. Advanced Functional Materials, 2015, 25, 1170-1179.	7.8	174
147	Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis. Chemical Society Reviews, 2021, 50, 11785-11843.	18.7	174
148	Nanomechanics of Individual Carbon Nanotubes from Pyrolytically Grown Arrays. Physical Review Letters, 2000, 85, 622-625.	2.9	173
149	Highâ€Performance, Stretchable, Wireâ€Shaped Supercapacitors. Angewandte Chemie - International Edition, 2015, 54, 618-622.	7.2	173
150	Formation of Large-Area Nitrogen-Doped Graphene Film Prepared from Simple Solution Casting of Edge-Selectively Functionalized Graphite and Its Electrocatalytic Activity. Chemistry of Materials, 2011, 23, 3987-3992.	3.2	171
151	Nanocomposite Electrodes for High-Performance Supercapacitors. Journal of Physical Chemistry Letters, 2011, 2, 655-660.	2.1	171
152	Highly crystalline sulfur-doped carbon nitride as photocatalyst for efficient visible-light hydrogen generation. Applied Catalysis B: Environmental, 2018, 238, 592-598.	10.8	171
153	Graphene Phosphonic Acid as an Efficient Flame Retardant. ACS Nano, 2014, 8, 2820-2825.	7.3	169
154	Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting. Energy and Environmental Science, 2020, 13, 545-553.	15.6	169
155	Novel Quinoxaline-Based Organic Sensitizers for Dye-Sensitized Solar Cells. Organic Letters, 2011, 13, 3880-3883.	2.4	166
156	Multifunctional electrocatalysts derived from conducting polymer and metal organic framework complexes. Nano Energy, 2018, 45, 127-135.	8.2	166
157	Conducting Polymers for Flexible Supercapacitors. Macromolecular Chemistry and Physics, 2019, 220, 1800355.	1.1	164
158	Determination of end-adsorbed polymer density profiles by neutron reflectometry. Macromolecules, 1992, 25, 434-439.	2.2	163
159	Determination of nitrite with the electrocatalytic property to the oxidation of nitrite on thionine modified aligned carbon nanotubes. Electrochemistry Communications, 2007, 9, 65-70.	2.3	163
160	Electrochemistry at Carbon Nanotube Electrodes: Is the Nanotube Tip More Active Than the Sidewall?. Angewandte Chemie - International Edition, 2008, 47, 5446-5450.	7.2	161
161	Aligned carbon nanotube–DNA electrochemical sensors. Chemical Communications, 2004, , 348-349.	2.2	160
162	Asymmetric End-Functionalization of Multi-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2005, 127, 4122-4123.	6.6	160

#	Article	IF	CITATIONS
163	Edgeâ€Selectively Halogenated Graphene Nanoplatelets (XGnPs, X = Cl, Br, or I) Prepared by Ballâ€Milling and Used as Anode Materials for Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 7317-7323.	11.1	160
164	Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Singleâ€Atomic Iron Sites. Angewandte Chemie - International Edition, 2021, 60, 9078-9085.	7.2	157
165	DNA Damage in Embryonic Stem Cells Caused by Nanodiamonds. ACS Nano, 2011, 5, 2376-2384.	7.3	153
166	Carbon-Based Metal-Free Electrocatalysis for Energy Conversion, Energy Storage, and Environmental Protection. Electrochemical Energy Reviews, 2018, 1, 84-112.	13.1	153
167	Multiwalled Carbon Nanotubes with Chemically Grafted Polyetherimides. Journal of the American Chemical Society, 2005, 127, 9984-9985.	6.6	151
168	Sulfated Graphene Oxide as a Hole-Extraction Layer in High-Performance Polymer Solar Cells. Journal of Physical Chemistry Letters, 2012, 3, 1928-1933.	2.1	151
169	A Facile Route to Bimetal and Nitrogen odoped 3D Porous Graphitic Carbon Networks for Efficient Oxygen Reduction. Small, 2016, 12, 4193-4199.	5.2	150
170	Edge Functionalization of Graphene and Twoâ€Dimensional Covalent Organic Polymers for Energy Conversion and Storage. Advanced Materials, 2016, 28, 6253-6261.	11.1	148
171	Functionalization of graphene materials by heteroatom-doping for energy conversion and storage. Progress in Natural Science: Materials International, 2018, 28, 121-132.	1.8	148
172	Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy. Nature Protocols, 2010, 5, 744-757.	5.5	145
173	Meshâ€onâ€Mesh Graphitic ₃ N ₄ @Graphene for Highly Efficient Hydrogen Evolution. Advanced Functional Materials, 2017, 27, 1606352.	7.8	145
174	Plasma Etching for Purification and Controlled Opening of Aligned Carbon Nanotubes. Journal of Physical Chemistry B, 2002, 106, 3543-3545.	1.2	144
175	Proton Capture Strategy for Enhancing Electrochemical CO ₂ Reduction on Atomically Dispersed Metal–Nitrogen Active Sites**. Angewandte Chemie - International Edition, 2021, 60, 11959-11965.	7.2	144
176	Photovoltaic-Active Dithienosilole-Containing Polymers. Macromolecules, 2007, 40, 9406-9412.	2.2	142
177	Recent Advances in Fiberâ€Shaped Supercapacitors and Lithiumâ€ion Batteries. Advanced Materials, 2020, 32, e1902779.	11.1	142
178	Gas Diffusion Strategy for Inserting Atomic Iron Sites into Graphitized Carbon Supports for Unusually Highâ€Efficient CO ₂ Electroreduction and Highâ€Performance Zn–CO ₂ Batteries. Advanced Materials, 2020, 32, e2002430.	11.1	141
179	Graphene-based materials for energy applications. MRS Bulletin, 2012, 37, 1265-1272.	1.7	140
180	Twoâ€Dimensional Conjugated Aromatic Networks as Highâ€Siteâ€Density and Singleâ€Atom Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 14724-14730.	7.2	139

#	Article	IF	CITATIONS
181	Large-Scale Synthesis of Perpendicularly Aligned Helical Carbon Nanotubes. Journal of the American Chemical Society, 2004, 126, 5070-5071.	6.6	136
182	Water-Assisted Growth of Aligned Carbon Nanotube–ZnO Heterojunction Arrays. Advanced Materials, 2006, 18, 1740-1744.	11.1	135
183	Highâ€Performance, Longâ€Life, Rechargeable Li–CO ₂ Batteries based on a 3D Holey Graphene Cathode Implanted with Single Iron Atoms. Advanced Materials, 2020, 32, e1907436.	11.1	133
184	Ultrahigh-Capacity Lithium–Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes. Nano Letters, 2017, 17, 3252-3260.	4.5	132
185	Enhancing Photocatalytic Activity of Graphitic Carbon Nitride by Codoping with P and C for Efficient Hydrogen Generation. ACS Applied Materials & Interfaces, 2017, 9, 21730-21737.	4.0	130
186	Facile and Scalable Preparation of Fluorescent Carbon Dots for Multifunctional Applications. Engineering, 2017, 3, 402-408.	3.2	130
187	Experimental and numerical analysis of the autoignition behavior of NH3 and NH3/H2 mixtures at high pressure. Combustion and Flame, 2020, 215, 134-144.	2.8	130
188	Electroreduction of CO ₂ to CO on a Mesoporous Carbon Catalyst with Progressively Removed Nitrogen Moieties. ACS Energy Letters, 2018, 3, 2292-2298.	8.8	129
189	Glucose sensors based on glucose-oxidase-containing polypyrrole/aligned carbon nanotube coaxial nanowire electrodes. Synthetic Metals, 2003, 137, 1393-1394.	2.1	128
190	Vertically aligned carbon nanotube electrodes for lithium-ion batteries. Journal of Power Sources, 2011, 196, 1455-1460.	4.0	128
191	Conjugated Polymers for Light-Emitting Applications. Advanced Materials, 2001, 13, 915-925.	11.1	127
192	Patterned Growth of Well-Aligned Carbon Nanotubes:  A Photolithographic Approach. Journal of the American Chemical Society, 1999, 121, 10832-10833.	6.6	126
193	Scalable Preparation of Multifunctional Fire-Retardant Ultralight Graphene Foams. ACS Nano, 2016, 10, 1325-1332.	7.3	126
194	Direct Measurements of the Interaction between Pyrene and Graphite in Aqueous Media by Single Molecule Force Spectroscopy:  Understanding the Ï€â^'Ï€ Interactions. Langmuir, 2007, 23, 7911-7915.	1.6	124
195	Robust self-cleaning and micromanipulation capabilities of gecko spatulae and their bio-mimics. Nature Communications, 2015, 6, 8949.	5.8	124
196	A facile and versatile approach to biocompatible "fluorescent polymers―from polymerizable carbon nanodots. Chemical Communications, 2012, 48, 10431.	2.2	123
197	Promotion of Overall Water Splitting Activity Over a Wide pH Range by Interfacial Electrical Effects of Metallic NiCoâ€nitrides Nanoparticle/NiCo ₂ O ₄ Nanoflake/graphite Fibers. Advanced Science, 2019, 6, 1801829.	5.6	122
198	Highly Efficient Quantum-Dot Light-Emitting Diodes with DNAâ^'CTMA as a Combined Hole-Transporting and Electron-Blocking Layer. ACS Nano, 2009, 3, 737-743.	7.3	121

#	Article	IF	CITATIONS
199	Highâ€Performance Liâ€CO ₂ Batteries Based on Metalâ€Free Carbon Quantum Dot/Holey Graphene Composite Catalysts. Advanced Functional Materials, 2018, 28, 1804630.	7.8	121
200	Membranes of Vertically Aligned Superlong Carbon Nanotubes. Langmuir, 2011, 27, 8437-8443.	1.6	119
201	Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. Materials Science and Engineering Reports, 2010, 70, 63-91.	14.8	118
202	Graphene Oxide Nanoribbon Assembly toward Moistureâ€Powered Information Storage. Advanced Materials, 2017, 29, 1604972.	11.1	118
203	Nitrogen-Doped Holey Graphene for High-Performance Rechargeable Li–O ₂ Batteries. ACS Energy Letters, 2016, 1, 260-265.	8.8	116
204	Polymer Solar Cells with 18.74% Efficiency: From Bulk Heterojunction to Interdigitated Bulk Heterojunction. Advanced Functional Materials, 2022, 32, 2108797.	7.8	116
205	Magnetic properties of Fe nanoparticles trapped at the tips of the aligned carbon nanotubes. Journal of Magnetism and Magnetic Materials, 2001, 231, 9-12.	1.0	115
206	Nitrogenâ€Doped Holey Graphene as an Anode for Lithiumâ€ion Batteries with High Volumetric Energy Density and Long Cycle Life. Small, 2015, 11, 6179-6185.	5.2	115
207	Characteristics of output voltage and current of integrated nanogenerators. Applied Physics Letters, 2009, 94, .	1.5	114
208	Ten years of carbonâ€based metalâ€free electrocatalysts. , 2019, 1, 19-31.		114
209	Direct Measurements of Interactions between Polypeptides and Carbon Nanotubes. Journal of Physical Chemistry B, 2006, 110, 12621-12625.	1.2	113
210	Nitrogen-Doped Graphene Nanoplatelets from Simple Solution Edge-Functionalization for n-Type Field-Effect Transistors. Journal of the American Chemical Society, 2013, 135, 8981-8988.	6.6	113
211	Few-layered graphene quantum dots as efficient hole-extraction layer for high-performance polymer solar cells. Nano Energy, 2015, 15, 186-192.	8.2	113
212	A general polymer-assisted strategy enables unexpected efficient metal-free oxygen-evolution catalysis on pure carbon nanotubes. Energy and Environmental Science, 2017, 10, 2312-2317.	15.6	113
213	Patterned Growth of Well-Aligned Carbon Nanotubes:Â A Soft-Lithographic Approach. Journal of Physical Chemistry B, 2000, 104, 2193-2196.	1.2	112
214	Preparation and characterization of three dimensional graphene foam supported platinum–ruthenium bimetallic nanocatalysts for hydrogen peroxide based electrochemical biosensors. Biosensors and Bioelectronics, 2014, 52, 1-7.	5.3	112
215	Rationally Designed Surfactants for Few-Layered Graphene Exfoliation: Ionic Groups Attached to Electron-Deficient π-Conjugated Unit through Alkyl Spacers. ACS Nano, 2014, 8, 6663-6670.	7.3	110
216	Can graphene quantum dots cause DNA damage in cells?. Nanoscale, 2015, 7, 9894-9901.	2.8	110

#	Article	IF	CITATIONS
217	Vaporâ€Activated Power Generation on Conductive Polymer. Advanced Functional Materials, 2016, 26, 8784-8792.	7.8	110
218	High-yield exfoliation of three-dimensional graphite into two-dimensional graphene-like sheets. Chemical Communications, 2010, 46, 6320.	2.2	109
219	Biomedical coatings by the covalent immobilization of polysaccharides onto gas-plasma-activated polymer surfaces. Surface and Interface Analysis, 2000, 29, 46-55.	0.8	108
220	Donor-π-Acceptor Conjugated Copolymers for Photovoltaic Applications:  Tuning the Open-Circuit Voltage by Adjusting the Donor/Acceptor Ratio. Journal of Physical Chemistry B, 2008, 112, 2801-2808.	1.2	107
221	Grapheneâ€Based Nanomaterials for Flexible and Wearable Supercapacitors. Small, 2018, 14, e1800879.	5.2	107
222	A photo-responsive bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nano Energy, 2018, 43, 130-137.	8.2	105
223	Efficient Oxygen Reduction Reaction (ORR) Catalysts Based on Single Iron Atoms Dispersed on a Hierarchically Structured Porous Carbon Framework. Angewandte Chemie, 2018, 130, 9176-9181.	1.6	105
224	Electrophoresis Coating of Titanium Dioxide on Aligned Carbon Nanotubes for Controlled Syntheses of Photoelectronic Nanomaterials. Advanced Materials, 2007, 19, 1239-1243.	11,1	104
225	Can Graphene Oxide Cause Damage to Eyesight?. Chemical Research in Toxicology, 2012, 25, 1265-1270.	1.7	104
226	Nitrogen, Phosphorus, and Fluorine Triâ€doped Graphene as a Multifunctional Catalyst for Selfâ€Powered Electrochemical Water Splitting. Angewandte Chemie, 2016, 128, 13490-13494.	1.6	104
227	Recent Advances in Graphene Quantum Dots for Fluorescence Bioimaging from Cells through Tissues to Animals. Particle and Particle Systems Characterization, 2015, 32, 515-523.	1.2	103
228	Bamboo-like carbon nanotubes produced by pyrolysis of iron(II) phthalocyanine. Carbon, 2001, 39, 1533-1536.	5.4	102
229	Graphene Oxide Nanoribbon as Hole Extraction Layer to Enhance Efficiency and Stability of Polymer Solar Cells. Advanced Materials, 2014, 26, 786-790.	11.1	102
230	Vertically Aligned Carbon Nanotube-Sheathed Carbon Fibers as Pristine Microelectrodes for Selective Monitoring of Ascorbate in Vivo. Analytical Chemistry, 2014, 86, 3909-3914.	3.2	102
231	Aligned Nanofibers from Polypyrrole/Graphene as Electrodes for Regeneration of Optic Nerve via Electrical Stimulation. ACS Applied Materials & Interfaces, 2016, 8, 6834-6840.	4.0	102
232	Origins of Boosted Charge Storage on Heteroatomâ€Doped Carbons. Angewandte Chemie - International Edition, 2020, 59, 7928-7933.	7.2	102
233	Highly Efficient Oxygen Reduction Reaction Electrocatalysts Synthesized under Nanospace Confinement of Metal–Organic Framework. ACS Nano, 2017, 11, 8379-8386.	7.3	100
234	Polymer–Metal Schottky Contact with Direct urrent Outputs. Advanced Materials, 2016, 28, 1461-1466.	11.1	99

#	Article	IF	CITATIONS
235	Natureâ€inspired lightâ€harvesting liquid crystalline porphyrins for organic photovoltaics. Liquid Crystals, 2008, 35, 233-239.	0.9	98
236	Soluble P3HT-Grafted Carbon Nanotubes: Synthesis and Photovoltaic Application. Macromolecules, 2010, 43, 6699-6705.	2.2	98
237	Large-Area Graphene Films by Simple Solution Casting of Edge-Selectively Functionalized Graphite. ACS Nano, 2011, 5, 4974-4980.	7.3	98
238	Tuning the Coordination Structure of Cuï£įNï£įC Single Atom Catalysts for Simultaneous Electrochemical Reduction of CO ₂ and NO ₃ [–] to Urea. Advanced Energy Materials, 2022, 12, .	10.2	98
239	Ignition delay times of NH3 /DME blends at high pressure and low DME fraction: RCM experiments and simulations. Combustion and Flame, 2021, 227, 120-134.	2.8	97
240	Conducting-Polymer Microcontainers: Controlled Syntheses and Potential Applications. Advanced Functional Materials, 2004, 14, 145-151.	7.8	95
241	Polymer-Carbon Nanotube Sheets for Conformal Load Bearing Antennas. IEEE Transactions on Antennas and Propagation, 2010, 58, 2169-2175.	3.1	95
242	Unconventional Carbon: Alkaline Dehalogenation of Polymers Yields Nâ€Đoped Carbon Electrode for Highâ€Performance Capacitive Energy Storage. Advanced Functional Materials, 2016, 26, 3340-3348.	7.8	95
243	Twoâ€Dimensional Conjugated Aromatic Networks as Highâ€Siteâ€Density and Singleâ€Atom Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 14866-14872.	1.6	95
244	Surface Modification by Plasma Etching and Plasma Patterning. Journal of Physical Chemistry B, 1997, 101, 9548-9554.	1.2	93
245	Facile Synthesis of Black Phosphorus: an Efficient Electrocatalyst for the Oxygen Evolving Reaction. Angewandte Chemie, 2016, 128, 14053-14057.	1.6	92
246	Boosting water oxidation on metal-free carbon nanotubes <i>via</i> directional interfacial charge-transfer induced by an adsorbed polyelectrolyte. Energy and Environmental Science, 2018, 11, 3334-3341.	15.6	92
247	Electroactive and biocompatible hydroxyl- functionalized graphene by ball milling. Journal of Materials Chemistry, 2012, 22, 8367.	6.7	90
248	Chemical Approaches to Carbonâ€Based Metalâ€Free Catalysts. Advanced Materials, 2019, 31, e1804863.	11.1	90
249	Autoignition studies of NH3/CH4 mixtures at high pressure. Combustion and Flame, 2020, 218, 19-26.	2.8	90
250	Plasma-polymerized polyaniline films: Synthesis and characterization. Journal of Polymer Science Part A, 1998, 36, 633-643.	2.5	89
251	Functionalized graphene nanoplatelets from ball milling for energy applications. Current Opinion in Chemical Engineering, 2016, 11, 52-58.	3.8	89
252	Advanced syntheses and microfabrications of conjugated polymers, C60-containing polymers and carbon nanotubes for optoelectronic applications. Polymers for Advanced Technologies, 1999, 10, 357-420.	1.6	88

#	Article	IF	CITATIONS
253	Novel Silver Nanostructures from Silver Mirror Reaction on Reactive Substrates. Journal of Physical Chemistry B, 2005, 109, 13985-13990.	1.2	88
254	Electrospun single-walled carbon nanotube/polyvinyl alcohol composite nanofibers: structure–property relationships. Nanotechnology, 2008, 19, 305702.	1.3	88
255	Carbon-based catalysts for metal-free electrocatalysis. Current Opinion in Electrochemistry, 2017, 4, 18-25.	2.5	88
256	Functionalized surfaces based on polymers and carbon nanotubes for some biomedical and optoelectronic applications. Nanotechnology, 2003, 14, 1081-1097.	1.3	87
257	Bilayer- and bulk-heterojunction solar cells using liquid crystalline porphyrins as donors by solution processing. Applied Physics Letters, 2007, 91, 253505.	1.5	87
258	Earth-abundant carbon catalysts for renewable generation of clean energy from sunlight and water. Nano Energy, 2017, 41, 367-376.	8.2	87
259	Holey graphene-based nanocomposites for efficient electrochemical energy storage. Nano Energy, 2020, 73, 104762.	8.2	87
260	Large-scale self-assembly of dispersed nanodiamonds. Journal of Materials Chemistry, 2008, 18, 1347.	6.7	83
261	Superhydrophobic electrospun POSS-PMMA copolymer fibres with highly ordered nanofibrillar and surface structures. Chemical Communications, 2009, , 6418.	2.2	83
262	Solution-processable graphene nanomeshes with controlled pore structures. Scientific Reports, 2013, 3, 1996.	1.6	83
263	Gold nanrods plasmon-enhanced photoelectrochemical aptasensing based on hematite/N-doped graphene films for ultrasensitive analysis of 17β-estradiol. Biosensors and Bioelectronics, 2017, 91, 706-713.	5.3	82
264	Activation of transition metal oxides by in-situ electro-regulated structure-reconstruction for ultra-efficient oxygen evolution. Nano Energy, 2019, 58, 778-785.	8.2	81
265	High-Performance Li-CO ₂ Batteries from Free-Standing, Binder-Free, Bifunctional Three-Dimensional Carbon Catalysts. ACS Energy Letters, 2020, 5, 916-921.	8.8	81
266	Conjugated and Fullerene-Containing Polymers for Electronic and Photonic Applications: Advanced Syntheses and Microlithographic Fabrications. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 1999, 39, 273-387.	2.2	80
267	An ultra-long life, high-performance, flexible Li–CO2 battery based on multifunctional carbon electrocatalysts. Nano Energy, 2020, 71, 104595.	8.2	80
268	Multiwalled carbon nanotubes for flow-induced voltage generation. Journal of Applied Physics, 2007, 101, 064312.	1.1	78
269	Carbon-based bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions: Optimization strategies and mechanistic analysis. Journal of Energy Chemistry, 2022, 71, 234-265.	7.1	78
270	Controlled Fabrication of Large-Scale Aligned Carbon Nanofiber/Nanotube Patterns by Photolithography. Advanced Materials, 2002, 14, 1140.	11.1	77

#	Article	IF	CITATIONS
271	3D graphene based materials for energy storage. Current Opinion in Colloid and Interface Science, 2015, 20, 429-438.	3.4	77
272	Doping of Conducting Polymers by Sulfonated Fullerene Derivatives and Dendrimers. Journal of Physical Chemistry B, 1998, 102, 4049-4053.	1.2	76
273	Length dependent foam-like mechanical response of axially indented vertically oriented carbon nanotube arrays. Carbon, 2011, 49, 386-397.	5.4	76
274	Chronic interfacing with the autonomic nervous system using carbon nanotube (CNT) yarn electrodes. Scientific Reports, 2017, 7, 11723.	1.6	76
275	Solubilized multi-walled carbon nanotubes with broadband optical limiting effect. Chemical Physics Letters, 2002, 359, 191-195.	1.2	75
276	Reversible Selfâ€Assembly of Terpyridineâ€Functionalized Graphene Oxide for Energy Conversion. Angewandte Chemie - International Edition, 2014, 53, 1415-1419.	7.2	75
277	Liquid Marbles Based on Magnetic Upconversion Nanoparticles as Magnetically and Optically Responsive Miniature Reactors for Photocatalysis and Photodynamic Therapy. Angewandte Chemie - International Edition, 2016, 55, 10795-10799.	7.2	75
278	Honeycomb architecture of carbon quantum dots: a new efficient substrate to support gold for stronger SERS. Nanoscale, 2012, 4, 1776.	2.8	74
279	Fabricating photoelectrochemical aptasensor for selectively monitoring microcystin-LR residues in fish based on visible light-responsive BiOBr nanoflakes/N-doped graphene photoelectrode. Biosensors and Bioelectronics, 2016, 81, 242-248.	5.3	74
280	Carbon Microfibers Sheathed with Aligned Carbon Nanotubes: Towards Multidimensional, Multicomponent, and Multifunctional Nanomaterials. Small, 2006, 2, 1052-1059.	5.2	72
281	Size―and Shapeâ€Dependent Fluorescence Quenching of Gold Nanoparticles on Perylene Dye. Advanced Optical Materials, 2013, 1, 581-587.	3.6	72
282	Structurally Defined 3D Nanographene Assemblies via Bottomâ€Up Chemical Synthesis for Highly Efficient Lithium Storage. Advanced Materials, 2016, 28, 10250-10256.	11.1	72
283	Self-templating synthesis of heteroatom-doped large-scalable carbon anodes for high-performance lithium-ion batteries. Inorganic Chemistry Frontiers, 2022, 9, 1058-1069.	3.0	72
284	Charge transfer of carbon nanomaterials for efficient metalâ€free electrocatalysis. , 2022, 1, 28-50.		72
285	Nitrogen-rich holey graphene for efficient oxygen reduction reaction. Carbon, 2020, 162, 66-73.	5.4	71
286	In situ SEM Observation of Column-like and Foam-like CNT Array Nanoindentation. ACS Applied Materials & Interfaces, 2011, 3, 648-653.	4.0	70
287	Tungsten Oxide/Carbide Surface Heterojunction Catalyst with High Hydrogen Evolution Activity. ACS Energy Letters, 2020, 5, 3560-3568.	8.8	70
288	Effects of MWNT nanofillers on structures and properties of PVA electrospun nanofibres. Nanotechnology, 2007, 18, 225605.	1.3	69

#	Article	IF	CITATIONS
289	Enhancement of through-thickness thermal conductivity in adhesively bonded joints using aligned carbon nanotubes. Composites Science and Technology, 2008, 68, 658-665.	3.8	69
290	Nitrogen-doped graphene by ball-milling graphite with melamine for energy conversion and storage. 2D Materials, 2015, 2, 044001.	2.0	69
291	Transforming active sites in nickel–nitrogen–carbon catalysts for efficient electrochemical CO2 reduction to CO. Nano Energy, 2020, 78, 105213.	8.2	69
292	Surface modification of aligned carbon nanotube arrays for electrochemical sensing applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1198-1201.	0.9	68
293	Lithium-ion batteries based on vertically-aligned carbon nanotube electrodes and ionic liquid electrolytes. Physical Chemistry Chemical Physics, 2012, 14, 12099.	1.3	68
294	Graphene-Based Nanowire Supercapacitors. Langmuir, 2014, 30, 3567-3571.	1.6	68
295	Multiscale patterning of graphene oxide and reduced graphene oxide for flexible supercapacitors. Carbon, 2015, 92, 305-310.	5.4	68
296	Designing Undercoordinated Ni–N _{<i>x</i>} and Fe–N _{<i>x</i>} on Holey Graphene for Electrochemical CO ₂ Conversion to Syngas. ACS Nano, 2021, 15, 12006-12018.	7.3	68
297	Carbon Nanomaterials for Energy and Biorelated Catalysis: Recent Advances and Looking Forward. ACS Central Science, 2019, 5, 389-408.	5.3	67
298	Three dimensional graphene foam supported platinum–ruthenium bimetallic nanocatalysts for direct methanol and direct ethanol fuel cell applications. Journal of Power Sources, 2014, 256, 329-335.	4.0	66
299	Highâ€Performance K–CO ₂ Batteries Based on Metalâ€Free Carbon Electrocatalysts. Angewandte Chemie - International Edition, 2020, 59, 3470-3474.	7.2	66
300	Recent advances in flexible/stretchable batteries and integrated devices. Energy Storage Materials, 2020, 33, 116-138.	9.5	66
301	Project Delivery System Selection under Uncertainty: Multicriteria Multilevel Decision Aid Model. Journal of Management in Engineering - ASCE, 2007, 23, 200-206.	2.6	65
302	Ancient Chemistry "Pharaoh's Snakes―for Efficient Fe-/N-Doped Carbon Electrocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 10778-10785.	4.0	64
303	Metal Charge Transfer Doped Carbon Dots with Reversibly Switchable, Ultra-High Quantum Yield Photoluminescence. ACS Applied Nano Materials, 2018, 1, 1886-1893.	2.4	64
304	CO ₂ Overall Splitting by a Bifunctional Metalâ€Free Electrocatalyst. Angewandte Chemie - International Edition, 2018, 57, 13135-13139.	7.2	64
305	Accelerated Water Dissociation Kinetics By Electronâ€Enriched Cobalt Sites for Efficient Alkaline Hydrogen Evolution. Advanced Functional Materials, 2022, 32, 2109556.	7.8	64
306	Fluorescent carbon dots from milk by microwave cooking. RSC Advances, 2016, 6, 41516-41521.	1.7	63

#	Article	IF	CITATIONS
307	Promoting CO ₂ Electroreduction Kinetics on Atomically Dispersed Monovalent Zn ^I Sites by Rationally Engineering Protonâ€Feeding Centers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	63
308	Soluble conducting polymers from polyisoprene. Polymer, 1991, 32, 2120-2127.	1.8	62
309	High Performance Heteroatoms Quaternary-doped Carbon Catalysts Derived from Shewanella Bacteria for Oxygen Reduction. Scientific Reports, 2015, 5, 17064.	1.6	62
310	Carbon nanotubes with fluorine-rich surface as metal-free electrocatalyst for effective synthesis of urea from nitrate and CO2. Applied Catalysis B: Environmental, 2022, 316, 121618.	10.8	62
311	End-adsorbed triblock copolymer chains at the liquid-solid interface: bridging effects in a good solvent. Macromolecules, 1992, 25, 6000-6006.	2.2	61
312	Light-Controlled Single-Walled Carbon Nanotube Dispersions in Aqueous Solution. Langmuir, 2008, 24, 9233-9236.	1.6	61
313	Flexible fiber-shaped non-enzymatic sensors with a graphene-metal heterostructure based on graphene fibres decorated with gold nanosheets. Carbon, 2018, 136, 329-336.	5.4	61
314	Topological Defectâ€Rich Carbon as a Metalâ€Free Cathode Catalyst for Highâ€Performance Liâ€CO ₂ Batteries. Advanced Energy Materials, 2021, 11, 2101390.	10.2	60
315	C60 modified single-walled carbon nanotubes. Chemical Physics Letters, 2003, 377, 32-36.	1.2	59
316	Flexible and wearable wire-shaped microsupercapacitors based on highly aligned titania and carbon nanotubes. Energy Storage Materials, 2016, 2, 21-26.	9.5	59
317	Metal-free photo- and electro-catalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 23674-23698.	5.2	59
318	Hierarchically structured electrodes for moldable supercapacitors by synergistically hybridizing vertical graphene nanosheets and MnO2. Carbon, 2021, 172, 272-282.	5.4	59
319	Liquid Crystalline Polymers for Efficient Bilayer-Bulk-Heterojunction Solar Cells. Journal of Physical Chemistry C, 2009, 113, 7892-7897.	1.5	58
320	Kohlenstoffbasierte Metallfreie Katalysatoren für die Elektrokatalyse jenseits der ORR. Angewandte Chemie, 2016, 128, 11910-11933.	1.6	58
321	Amperometric Glucose Biosensor Based on Platinum Nanoparticles Combined Aligned Carbon Nanotubes Electrode. Electroanalysis, 2007, 19, 1069-1074.	1.5	57
322	Water-Dispersible, Sulfonated Hyperbranched Poly(ether-ketone) Grafted Multiwalled Carbon Nanotubes as Oxygen Reduction Catalysts. ACS Nano, 2012, 6, 6345-6355.	7.3	57
323	Characterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials. Journal of Prosthetic Dentistry, 2014, 111, 318-326.	1.1	57
324	Surface immobilization of poly(ethylene oxide): Structure and properties. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 2323-2332.	2.4	56

#	Article	IF	CITATIONS
325	Platinized Aligned Carbon Nanotube-Sheathed Carbon Fiber Microelectrodes for In Vivo Amperometric Monitoring of Oxygen. Analytical Chemistry, 2014, 86, 5017-5023.	3.2	56
326	Graphene Oxide-Based Carbon Interconnecting Layer for Polymer Tandem Solar Cells. Nano Letters, 2014, 14, 1467-1471.	4.5	56
327	Plasma patterning of carbon nanotubes. Applied Physics Letters, 2000, 76, 2719-2721.	1.5	55
328	Multifunctional carbon-based metal-free catalysts for advanced energy conversion and storage. Cell Reports Physical Science, 2021, 2, 100328.	2.8	55
329	Photochemical Generation of Conducting Patterns in Polybutadiene Films. Macromolecules, 1996, 29, 282-287.	2.2	54
330	The photoconductivity of PVK-carbon nanotube blends. Chemical Physics Letters, 2002, 364, 196-199.	1.2	54
331	Advanced gecko-foot-mimetic dry adhesives based on carbon nanotubes. Nanoscale, 2013, 5, 475-486.	2.8	54
332	Natural tea-leaf-derived, ternary-doped 3D porous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Research, 2016, 9, 1244-1255.	5.8	54
333	Carbon nanotube dry adhesives with temperature-enhanced adhesion over a large temperature range. Nature Communications, 2016, 7, 13450.	5.8	54
334	Preparation of microvillus-like nitrogen-doped carbon nanotubes as the cathode of a microbial fuel cell. Journal of Materials Chemistry A, 2016, 4, 1632-1636.	5.2	54
335	Oxygen Vacancy Engineering in Europia Clusters/Graphite-Like Carbon Nitride Nanostructures Induced Signal Amplification for Highly Efficient Electrochemiluminesce Aptasensing. Analytical Chemistry, 2018, 90, 3615-3620.	3.2	54
336	Universal domino reaction strategy for mass production of single-atom metal-nitrogen catalysts for boosting CO2 electroreduction. Nano Energy, 2021, 82, 105689.	8.2	54
337	Novel Poly(p-phenylene vinylene) Derivatives with Oligo(ethylene oxide) Side Chains:  Synthesis and Pattern Formation. Chemistry of Materials, 1999, 11, 704-711.	3.2	53
338	Structural Evaluation along the Nanotube Length for Super-long Vertically Aligned Double-Walled Carbon Nanotube Arrays. Journal of Physical Chemistry C, 2008, 112, 8136-8139.	1.5	53
339	Highly Crystalline and Low Bandgap Donor Polymers for Efficient Polymer Solar Cells. Advanced Materials, 2012, 24, 538-542.	11.1	53
340	Functionalized carbon nanotubes and graphene-based materials for energy storage. Chemical Communications, 2016, 52, 14350-14360.	2.2	53
341	Surface and Interface Control of Polymeric Biomaterials, Conjugated Polymers, and Carbon Nanotubes. Journal of Physical Chemistry B, 2000, 104, 1891-1915.	1.2	52
342	Ternary Pd2/PtFe networks supported by 3D graphene for efficient and durable electrooxidation of formic acid. Chemical Communications, 2012, 48, 11865.	2.2	52

#	Article	IF	CITATIONS
343	Droplet Manipulation on Wettable Gradient Surfaces with Micro-/Nano-Hierarchical Structure. Chemistry of Materials, 2016, 28, 3625-3629.	3.2	52
344	Fast Diffusion of O ₂ on Nitrogen-Doped Graphene to Enhance Oxygen Reduction and Its Application for High-Rate Zn–Air Batteries. ACS Applied Materials & Interfaces, 2017, 9, 7125-7130.	4.0	52
345	Donor–Acceptor Nanocarbon Ensembles to Boost Metalâ€Free Allâ€pH Hydrogen Evolution Catalysis by Combined Surface and Dual Electronic Modulation. Angewandte Chemie - International Edition, 2019, 58, 16217-16222.	7.2	52
346	Promoting Electrochemical CO ₂ Reduction via Boosting Activation of Adsorbed Intermediates on Iron Singleâ€Atom Catalyst. Advanced Functional Materials, 2022, 32, .	7.8	52
347	Carbon Nanotube Electroactive Polymer Materials: Opportunities and Challenges. MRS Bulletin, 2008, 33, 215-224.	1.7	51
348	Living Cells Directly Growing on a DNA/Mn ₃ (PO ₄) ₂ â€Immobilized and Vertically Aligned CNT Array as a Freeâ€6tanding Hybrid Film for Highly Sensitive In Situ Detection of Released Superoxide Anions. Advanced Functional Materials, 2015, 25, 5924-5932.	7.8	51
349	Graphitic carbon nitrides supported by nitrogen-doped graphene as efficient metal-free electrocatalysts for oxygen reduction. Journal of Electroanalytical Chemistry, 2015, 753, 16-20.	1.9	51
350	Building a Three-Dimensional Nano–Bio Interface for Aptasensing: An Analytical Methodology Based on Steric Hindrance Initiated Signal Amplification Effect. Analytical Chemistry, 2016, 88, 9622-9629.	3.2	51
351	Interfacial aspects of carbon composites. Composite Interfaces, 2018, 25, 539-605.	1.3	51
352	Fe Vacancies Induced Surface FeO ₆ in Nanoarchitectures of Nâ€Doped Graphene Protected βâ€FeOOH: Effective Active Sites for pHâ€Universal Electrocatalytic Oxygen Reduction. Advanced Functional Materials, 2018, 28, 1803330.	7.8	51
353	Pyrazino[2,3-g]quinoxaline-based conjugated copolymers with indolocarbazole coplanar moieties designed for efficient photovoltaic applications. Journal of Materials Chemistry, 2011, 21, 7714.	6.7	50
354	Multiâ€Responsive Janus Liquid Marbles: The Effect of Temperature and Acidic/Basic Vapors. Particle and Particle Systems Characterization, 2014, 31, 839-842.	1.2	50
355	Uniform Twoâ€Dimensional Co ₃ O ₄ Porous Sheets: Facile Synthesis and Enhanced Photocatalytic Performance. Chemical Engineering and Technology, 2016, 39, 891-898.	0.9	50
356	Multilayer white polymer light-emitting diodes with deoxyribonucleic acid-cetyltrimetylammonium complex as a hole-transporting/electron-blocking layer. Applied Physics Letters, 2008, 92, 251108.	1.5	49
357	Multicolor Electrochromic Fibers with Helixâ€Patterned Electrodes. Advanced Electronic Materials, 2018, 4, 1800104.	2.6	49
358	Organo-soluble photoresponsive azo thiol monolayer-protected gold nanorods. Chemical Communications, 2009, , 2109.	2.2	48
359	Organo-Soluble Chiral Thiol-Monolayer-Protected Gold Nanorods. Langmuir, 2011, 27, 98-103.	1.6	48
360	Macroscopic Graphene Fibers Directly Assembled from CVDâ€Grown Fiberâ€Shaped Hollow Graphene Tubes_Angewandte Chemie - International Edition_2015_54_14947-14950	7.2	48

#	Article	IF	CITATIONS
361	Tactile UV―and Solarâ€Light Multiâ€Sensing Rechargeable Batteries with Smart Selfâ€Conditioned Charge and Discharge. Angewandte Chemie - International Edition, 2019, 58, 9248-9253.	7.2	48
362	Metalâ€Free Carbon Electrocatalysts: Recent Advances and Challenges Ahead. Advanced Materials, 2019, 31, e1900973.	11.1	48
363	Viscoelastic creep of vertically aligned carbon nanotubes. Journal Physics D: Applied Physics, 2010, 43, 315401.	1.3	47
364	Optical Turn-On Sensor Based on Graphene Oxide for Selective Detection of <scp>d</scp> -Glucosamine. Analytical Chemistry, 2012, 84, 5641-5644.	3.2	47
365	Two-Dimensional Fully Conjugated Polymeric Photosensitizers for Advanced Photodynamic Therapy. Chemistry of Materials, 2016, 28, 8651-8658.	3.2	47
366	Transferrin-coated magnetic upconversion nanoparticles for efficient photodynamic therapy with near-infrared irradiation and luminescence bioimaging. Nanoscale, 2017, 9, 11214-11221.	2.8	47
367	Impurity Tolerance of Unsaturated Ni-N-C Active Sites for Practical Electrochemical CO ₂ Reduction. ACS Energy Letters, 2022, 7, 920-928.	8.8	47
368	Nanotube â€~crop circles'. Journal of Materials Chemistry, 1999, 9, 1221-1222.	6.7	46
369	Cytotoxicity and Genotoxicity of Carbon Nanomaterials. Nanostructure Science and Technology, 2009, , 159-187.	0.1	46
370	Asymmetrically Functionalized Graphene for Photodependent Diode Rectifying Behavior. Angewandte Chemie - International Edition, 2011, 50, 6575-6578.	7.2	46
371	Growth of junctions in 3D carbon nanotube-graphene nanostructures: A quantum mechanical molecular dynamic study. Carbon, 2014, 67, 627-634.	5.4	46
372	Morphology controllable and highly luminescent monoclinic LaPO4:Eu3+ microspheres. Journal of Alloys and Compounds, 2014, 582, 603-608.	2.8	46
373	Pyrolysis of Animal Bones with Vitamin B12: A Facile Route to Efficient Transition Metal–Nitrogen–Carbon (TMâ€ <i>N</i>) Electrocatalysts for Oxygen Reduction. Chemistry - A European Journal, 2016, 22, 2896-2901.	1.7	45
374	Luminescent amphiphilic dendrimers with oligo(p-phenylene vinylene) core branches and oligo(ethylene oxide) terminal chains: syntheses and stimuli-responsive properties. Journal of Materials Chemistry, 2007, 17, 364-371.	6.7	44
375	A bio-inspired Co3O4-polypyrrole-graphene complex as an efficient oxygen reduction catalyst in one-step ball milling. Nano Research, 2015, 8, 3461-3471.	5.8	44
376	Graphdiyne with tunable activity towards hydrogen evolution reaction. Nano Energy, 2019, 63, 103874.	8.2	44
377	Biocompatible nucleus-targeted graphene quantum dots for selective killing of cancer cells via DNA damage. Communications Biology, 2021, 4, 214.	2.0	44
378	Ultrathick MoS ₂ Films with Exceptionally High Volumetric Capacitance. Advanced Energy Materials, 2022, 12, .	10.2	44

#	Article	IF	CITATIONS
379	Perylene Monolayer Protected Gold Nanorods: Unique Optical, Electronic Properties and Self-Assemblies. Journal of Physical Chemistry C, 2012, 116, 10396-10404.	1.5	43
380	Graphene networks for high-performance flexible and transparent supercapacitors. RSC Advances, 2014, 4, 36996.	1.7	43
381	Solvent-free mechanochemical reduction of graphene oxide. Carbon, 2014, 77, 501-507.	5.4	43
382	Biomechanics of gecko locomotion: the patterns of reaction forces on inverted, vertical and horizontal substrates. Bioinspiration and Biomimetics, 2015, 10, 016019.	1.5	43
383	Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries. Nano Research, 2017, 10, 1268-1281.	5.8	43
384	Light-emitting electrochemical cells and light-emitting diodes based on ionic conductive poly(phenylene vinylene): a new chemical sensor system. Synthetic Metals, 1999, 100, 71-77.	2.1	42
385	Toxicity Testing of Nanomaterials. Advances in Experimental Medicine and Biology, 2012, 745, 58-75.	0.8	42
386	CeO2 nanocrystallines ensemble-on-nitrogen-doped graphene nanocomposites: one-pot, rapid synthesis and excellent electrocatalytic activity for enzymatic biosensing. Biosensors and Bioelectronics, 2017, 89, 681-688.	5.3	42
387	Unveiling Trifunctional Active Sites of a Heteronanosheet Electrocatalyst for Integrated Cascade Battery/Electrolyzer Systems. ACS Energy Letters, 2021, 6, 2460-2468.	8.8	42
388	Site-density engineering of single-atomic iron catalysts for high-performance proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2022, 302, 120860.	10.8	42
389	Bending instability of an embedded double-walled carbon nanotube based on Winkler and van der Waals models. Composites Science and Technology, 2005, 65, 1337-1346.	3.8	41
390	Photophysical and Electroluminescent Properties of Hyperbranched Polyfluorenes. Macromolecular Chemistry and Physics, 2006, 207, 870-878.	1.1	41
391	In-Situ Nanocomposite Synthesis: Arylcarbonylation and Grafting of Primary Diamond Nanoparticles with a Poly(etherâ^'ketone) in Polyphosphoric Acid. Macromolecules, 2009, 42, 114-124.	2.2	41
392	Multidimensional ZnO Architecture for Dyeâ€Sensitized Solar Cells with Highâ€Efficiency up to 7.35%. Advanced Energy Materials, 2014, 4, 1301802.	10.2	41
393	N-doped graphene nanoribbons as efficient metal-free counter electrodes for disulfide/thiolate redox mediated DSSCs. Nanoscale, 2015, 7, 7078-7083.	2.8	41
394	Plasma-induced moieties impart super-efficient activity to hydrogen evolution electrocatalysts. Nano Energy, 2021, 85, 106030.	8.2	41
395	Design, synthesis and photophysical properties of a hyperbranched conjugated polymer. Thin Solid Films, 2000, 363, 122-125.	0.8	40
396	Scanning tunneling microscopy of aligned coaxial nanowires of polyaniline passivated carbon nanotubes. Chemical Physics Letters, 2001, 342, 479-484.	1.2	40

#	Article	IF	CITATIONS
397	Biomoleculeâ€Doped PEDOT with Threeâ€Dimensional Nanostructures as Efficient Catalyst for Oxygen Reduction Reaction. Small, 2014, 10, 2087-2095.	5.2	40
398	Multifunctional luminescent nanomaterials from NaLa(MoO4)2:Eu3+/Tb3+ with tunable decay lifetimes, emission colors and enhanced cell viability. Scientific Reports, 2015, 5, 11844.	1.6	39
399	Conducting Polymers from Polybutadiene: Molecular Configuration Effects on the Iodine-Induced Conjugation Reactions. Macromolecules, 1994, 27, 6728-6735.	2.2	38
400	Surface Functionalization of Carbon Dots with Polyhedral Oligomeric Silsesquioxane (POSS) for Multifunctional Applications. Advanced Materials Interfaces, 2016, 3, 1500439.	1.9	38
401	Metal–Organic Frameworks with Assembled Bifunctional Microreactor for Charge Modulation and Strain Generation toward Enhanced Oxygen Electrocatalysis. ACS Nano, 2022, 16, 9523-9534.	7.3	38
402	Pt Single Atom Electrocatalysts at Graphene Edges for Efficient Alkaline Hydrogen Evolution. Advanced Functional Materials, 2022, 32, .	7.8	38
403	Forces between End-Adsorbed Triblock Copolymer Chains and a Bare Mica Surface in a Good Solvent. Europhysics Letters, 1991, 16, 331-335.	0.7	37
404	Grafting of Buckminsterfullerene onto Polydiene: A New Route to Fullerene-Containing Polymers. The Journal of Physical Chemistry, 1995, 99, 17302-17304.	2.9	37
405	Synthesis of fullerene- and fullerol-containing polymers. Journal of Materials Chemistry, 1998, 8, 325-330.	6.7	37
406	Super-long aligned TiO ₂ /carbon nanotube arrays. Nanotechnology, 2010, 21, 505702.	1.3	37
407	Multilevel, Multicomponent Microarchitectures of Vertically-Aligned Carbon Nanotubes for Diverse Applications. ACS Nano, 2011, 5, 994-1002.	7.3	37
408	Recent advances in flexible batteries: From materials to applications. Nano Research, 2023, 16, 4821-4854.	5.8	37
409	Three-Dimensional Micropatterns of Well-Aligned Carbon Nanotubes Produced by Photolithography. Journal of Nanoscience and Nanotechnology, 2001, 1, 43-47.	0.9	36
410	Microporous N,Pâ€Codoped Graphitic Nanosheets as an Efficient Electrocatalyst for Oxygen Reduction in Whole pH Range for Energy Conversion and Biosensing Dissolved Oxygen. Chemistry - A European Journal, 2018, 24, 18487-18493.	1.7	36
411	Charge-transfer complexes between polyacetylene-type polymers and iodine in solution. The Journal of Physical Chemistry, 1992, 96, 6469-6471.	2.9	35
412	Functional Nanohybrids Constructed via Complexation of Multiwalled Carbon Nanotubes with Novel Hexameric Metallomacrocyles. Chemistry of Materials, 2006, 18, 4019-4024.	3.2	35
413	A facile synthesis of aliphatic thiol surfactant with tunable length as a stabilizer of gold nanoparticles in organic solvents. Journal of Colloid and Interface Science, 2007, 308, 381-384.	5.0	35
414	Graphene: Tunable superdoping. Nature Energy, 2016, 1, .	19.8	35

#	Article	IF	CITATIONS
415	A graphene rheostat for highly durable and stretchable strain sensor. InformaÄnÃ-Materiály, 2019, 1, 396-406.	8.5	35
416	Nonâ€Nâ€Doped Carbons as Metalâ€Free Electrocatalysts. Advanced Sustainable Systems, 2021, 5, .	2.7	35
417	Ionochromism in a light-emitting electrochemical cell with low response time based on an ionic conductive poly-phenylene vinylene. Applied Physics Letters, 1999, 75, 2014-2016.	1.5	34
418	Gas expansion-assisted preparation of 3D porous carbon nanosheet for high-performance sodium ion hybrid capacitor. Journal of Power Sources, 2020, 475, 228679.	4.0	34
419	Facet Engineering in Ultrathin Two-Dimensional NiFe Metal–Organic Frameworks by Coordination Modulation for Enhanced Electrocatalytic Water Oxidation. ACS Sustainable Chemistry and Engineering, 2021, 9, 10892-10901.	3.2	34
420	Multicomponent Interposed Carbon Nanotube Micropatterns by Region-Specific Contact Transfer and Self-Assembling. Journal of Physical Chemistry B, 2003, 107, 12387-12390.	1.2	33
421	Electrochemical Sensors Based on Architectural Diversity of the ?-Conjugated Structure: Recent Advancements from Conducting Polymers and Carbon Nanotubes. Australian Journal of Chemistry, 2007, 60, 472.	0.5	33
422	Organo-Soluble Porphyrin Mixed Monolayer-Protected Gold Nanorods with Intercalated Fullerenes. Langmuir, 2012, 28, 5956-5963.	1.6	33
423	Synthesis, characterization of the phenylquinoline-based on iridium(III) complexes for solution processable phosphorescent organic light-emitting diodes. Organic Electronics, 2013, 14, 2114-2123.	1.4	33
424	Thermal conductivity of carbon nanotubes grown by catalyst-free chemical vapor deposition in nanopores. Carbon, 2019, 145, 195-200.	5.4	33
425	Task-Specific Synthesis of 3D Porous Carbon Nitrides from the Cycloaddition Reaction and Sequential Self-Assembly Strategy toward Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 40433-40442.	4.0	33
426	Highly efficient and selective electrocatalytic hydrogen peroxide production on Co-O-C active centers on graphene oxide. Communications Chemistry, 2022, 5, .	2.0	33
427	Light-emitting electrochemical cells with microsecond response times based on PPPs and novel PPVs. Synthetic Metals, 1999, 102, 1046-1049.	2.1	32
428	Title is missing!. Journal of Nanoparticle Research, 2002, 4, 145-155.	0.8	32
429	Direct growth of three-dimensional multicomponent micropatterns of vertically aligned single-walled carbon nanotubes interposed with their multi-walled counterparts on Al-activated iron substrates. Journal of Materials Chemistry, 2007, 17, 3401.	6.7	32
430	Acoustic-assisted assembly of an individual monochromatic ultralong carbon nanotube for high on-current transistors. Science Advances, 2016, 2, e1601572.	4.7	32
431	A facile approach to high-performance trifunctional electrocatalysts by substrate-enhanced electroless deposition of Pt/NiO/Ni on carbon nanotubes. Nanoscale, 2020, 12, 14615-14625.	2.8	32
432	Conformational Transitions of End-Adsorbed Copolymer Chains at the Liquid/Solid Interface. Macromolecules, 1995, 28, 5512-5517.	2.2	31

#	Article	IF	CITATIONS
433	Multifunctional quinoxaline containing small molecules with multiple electron-donating moieties: Solvatochromic and optoelectronic properties. Synthetic Metals, 2012, 162, 1169-1176.	2.1	31
434	Graphene oxide complex as a pH-sensitive antitumor drug. Polymer Chemistry, 2015, 6, 2401-2406.	1.9	31
435	TpyCo ²⁺ â€Based Coordination Polymers by Waterâ€Induced Gelling Trigged Efficient Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 2000593.	7.8	31
436	Photovoltaic Devices with Methanofullerenes as Electron Acceptors. Journal of Physical Chemistry B, 2002, 106, 11509-11514.	1.2	30
437	Vertically-aligned carbon nanotubes infiltrated with temperature-responsive polymers: smart nanocomposite films for self-cleaning and controlled release. Chemical Communications, 2008, , 163-165.	2.2	30
438	Voltage-induced incandescent light emission from large-area graphene films. Applied Physics Letters, 2010, 96, .	1.5	30
439	Graphene based energy devices. Nanoscale, 2015, 7, 6881-2.	2.8	30
440	One-dimensional (1D) [6,6]-phenyl-C ₆₁ -butyric acid methyl ester (PCBM) nanorods as an efficient additive for improving the efficiency and stability of perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 8566-8572.	5.2	30
441	Catalytic activity comparison of Zr–SBA-15 immobilized by a BrÃ,nsted–Lewis acidic ionic liquid in different esterifications. RSC Advances, 2017, 7, 32427-32435.	1.7	30
442	Building 3D Layer-by-Layer Graphene–Gold Nanoparticle Hybrid Architecture with Tunable Interlayer Distance. Journal of Physical Chemistry C, 2014, 118, 15332-15338.	1.5	29
443	Nitrogen-Doped Graphene Foam as a Metal-Free Catalyst for Reduction Reactions under a High Gravity Field. Engineering, 2020, 6, 680-687.	3.2	29
444	Carbon-Based Metal-Free Electrocatalysts: Past, Present, and Future. Accounts of Materials Research, 2021, 2, 1239-1250.	5.9	29
445	Asymmetrically Charged Carbon Nanotubes by Controlled Functionalization. ACS Nano, 2008, 2, 1833-1840.	7.3	28
446	Adhesion, friction and wear on the nanoscale of MWNT tips and SWNT and MWNT arrays. Nanotechnology, 2008, 19, 125702.	1.3	28
447	PAF-derived nitrogen-doped 3D Carbon Materials for Efficient Energy Conversion and Storage. Scientific Reports, 2015, 5, 8307.	1.6	28
448	Ocular biocompatibility evaluation of hydroxyl-functionalized graphene. Materials Science and Engineering C, 2015, 50, 300-308.	3.8	28
449	Novel [60]fullerene–silver nanocomposite with large optical limiting effect. Chemical Physics Letters, 2001, 344, 277-282.	1.2	27
450	Facile fabrication of 3D layer-by-layer graphene-gold nanorod hybrid architecture for hydrogen peroxide based electrochemical biosensor. Sensing and Bio-Sensing Research, 2015, 3, 7-11.	2.2	27

#	Article	IF	CITATIONS
451	Numerical investigations on charge motion and combustion of natural gas-enhanced ammonia in marine pre-chamber lean-burn engine with dual-fuel combustion system. International Journal of Hydrogen Energy, 2023, 48, 11476-11492.	3.8	27
452	Electromechanical characterization of carbon nanotubes grown on carbon fiber. Journal of Applied Physics, 2009, 106, .	1.1	26
453	Determination of Alanine Aminotransferase with an Electrochemical Nano Ir-C Biosensor for the Screening of Liver Diseases. Biosensors, 2011, 1, 107-117.	2.3	26
454	Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Singleâ€Atomic Iron Sites. Angewandte Chemie, 2021, 133, 9160-9167.	1.6	26
455	Ultraviolet/ozone treatment for boosting OER activity of MOF nanoneedle arrays. Chemical Engineering Journal, 2022, 427, 131498.	6.6	26
456	Synthesis and structures of aligned branched carbon nanotubes produced by pyrolysis of iron(II) phthalocyanine. Physica B: Condensed Matter, 2002, 323, 336-338.	1.3	25
457	Controlled syntheses of conducting polymer micro- and nano-structures for potential applications. Synthetic Metals, 2006, 156, 466-469.	2.1	25
458	Solvent-free functionalization and transfer of aligned carbon nanotubes with vapor-deposited polymer nanocoatings. Journal of Materials Chemistry, 2011, 21, 837-842.	6.7	25
459	Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells. Scientific Reports, 2016, 6, 26961.	1.6	25
460	Catalytic origin and universal descriptors of heteroatom-doped photocatalysts for solar fuel production. Nano Energy, 2019, 63, 103819.	8.2	25
461	Proton Capture Strategy for Enhancing Electrochemical CO ₂ Reduction on Atomically Dispersed Metal–Nitrogen Active Sites**. Angewandte Chemie, 2021, 133, 12066-12072.	1.6	25
462	Indirect surpassing CO2 utilization in membrane-free CO2 battery. Nano Energy, 2021, 82, 105741.	8.2	25
463	Sublayer-enhanced atomic sites of single atom catalysts through <i>in situ</i> atomization of metal oxide nanoparticles. Energy and Environmental Science, 2022, 15, 1183-1191.	15.6	25
464	Highly Rechargeable Lithiumâ€CO ₂ Batteries with a Boron―and Nitrogenâ€Codoped Holeyâ€Graphene Cathode. Angewandte Chemie, 2017, 129, 7074-7078.	1.6	24
465	Structural Engineering of Ultrathin ReS ₂ on Hierarchically Architectured Graphene for Enhanced Oxygen Reduction. ACS Nano, 2021, 15, 5560-5566.	7.3	24
466	Numerical study on laminar burning velocity of ammonia flame with methanol addition. International Journal of Hydrogen Energy, 2022, 47, 28152-28164.	3.8	24
467	Surface activity of polyacetylene-polyisoprene solutions. Synthetic Metals, 1989, 28, D69-D89.	2.1	23
468	3D Pt/Graphene foam bioplatform for highly sensitive and selective in-situ adsorption and detection of superoxide anions released from living cells. Sensors and Actuators B: Chemical, 2019, 287, 209-217.	4.0	23

#	Article	IF	CITATIONS
469	"l2-Doping―of 1,4-polydienes. Synthetic Metals, 1995, 69, 563-566.	2.1	22
470	Crown ether substituted phenylenevinylene oligomers: Synthesis and electroluminescent properties. Physical Chemistry Chemical Physics, 2000, 2, 291-295.	1.3	22
471	Strong Graphene 3D Assemblies with High Elastic Recovery and Hardness. Advanced Materials, 2018, 30, e1707424.	11.1	22
472	Title is missing!. Journal of Materials Science Letters, 2000, 19, 1645-1647.	0.5	21
473	Cytotoxicity and genotoxicity of multi-walled carbon nanotubes with human ocular cells. Science Bulletin, 2013, 58, 2347-2352.	1.7	21
474	Earth-abundant metal-free carbon-based electrocatalysts for Zn-air batteries to power electrochemical generation of H2O2 for in-situ wastewater treatment. Chemical Engineering Journal, 2021, 416, 128338.	6.6	21
475	Carboxylated carbon nanotubes with high electrocatalytic activity for oxygen evolution in acidic conditions. InformaÄnÃ-Materiály, 2022, 4, .	8.5	21
476	Boosting Alkaline Hydrogen Evolution on Stoichiometric Molybdenum Carbonitride via an Interstitial Vacancyâ€Elimination Strategy. Advanced Energy Materials, 2022, 12, .	10.2	21
477	Controlled Syntheses of Aligned Multi-Walled Carbon Nanotubes:  Catalyst Particle Size and Density Control via Layer-by-Layer Assembling. Chemistry of Materials, 2005, 17, 6599-6604.	3.2	20
478	Polymer-masking for controlled functionalization of carbon nanotubes. Chemical Communications, 2007, , 3859.	2.2	20
479	Self-Assembly of Gold Nanowires along Carbon Nanotubes for Ultrahigh-Aspect-Ratio Hybrids. Chemistry of Materials, 2011, 23, 2760-2765.	3.2	20
480	Preparation and Electrocatalytic Activity of Gold Nanoparticles Immobilized on the Surface of 4-Mercaptobenzoyl-Functionalized Multiwalled Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 1746-1751.	1.5	20
481	Liquid Marbles Based on Magnetic Upconversion Nanoparticles as Magnetically and Optically Responsive Miniature Reactors for Photocatalysis and Photodynamic Therapy. Angewandte Chemie, 2016, 128, 10953-10957.	1.6	20
482	Short Hydrogen Bonds on Reconstructed Nanocrystal Surface Enhance Oxygen Evolution Activity. ACS Catalysis, 2018, 8, 466-473.	5.5	20
483	Title is missing!. Journal of Materials Science Letters, 1999, 18, 1539-1541.	O.5	19
484	Controlled fabrication of aligned carbon nanotube patterns. Physica B: Condensed Matter, 2002, 323, 333-335.	1.3	19
485	From conventional technology to carbon nanotechnology: The fourth industrial revolution and the discoveries of C60, carbon nanotube and nanodiamond. , 2006, , 3-11.		19
486	Hybrid Carbon Fibers/Carbon Nanotubes Structures for Next Generation Polymeric Composites. Journal of Nanotechnology, 2010, 2010, 1-9.	1.5	19

#	Article	IF	CITATIONS
487	lodine-induced uncoiling of polyisoprene random coils in solution. European Polymer Journal, 1994, 30, 1443-1447.	2.6	18
488	Bistriphenylamine-based organic sensitizers with high molar extinction coefficients for dye-sensitized solar cells. RSC Advances, 2012, 2, 6209.	1.7	18
489	Conformational Transitions of Polymer Brushes for Reversibly Switching Graphene Transistors. Macromolecules, 2016, 49, 7434-7441.	2.2	18
490	Label-Free Graphene Oxide Förster Resonance Energy Transfer Sensors for Selective Detection of Dopamine in Human Serums and Cells. Journal of Physical Chemistry C, 2018, 122, 13314-13321.	1.5	18
491	Nanoparticle based simple electrochemical biosensor platform for profiling of protein-nucleic acid interactions. Talanta, 2019, 195, 46-54.	2.9	18
492	Facile Synthesis of Nanostructural Highâ€Performance Cu–Pb Electrocatalysts for CO ₂ Reduction. Advanced Materials Interfaces, 2019, 6, 1801200.	1.9	18
493	High-performance metal–iodine batteries enabled by a bifunctional dendrite-free Li–Na alloy anode. Journal of Materials Chemistry A, 2021, 9, 538-545.	5.2	18
494	Superior thermal interface via vertically aligned carbon nanotubes grown on graphite foils. Journal of Materials Research, 2013, 28, 933-939.	1.2	17
495	Ultrathin Wrinkled N-Doped Carbon Nanotubes for Noble-Metal Loading and Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2015, 7, 20507-20512.	4.0	17
496	Morphology and electrical properties of polyacetylene-polyisoprene conducting copolymers. Polymer, 1997, 38, 775-783.	1.8	16
497	Light-emitting polymers and carbon nanotube electron emitters for optoelectronic displays. Smart Materials and Structures, 2002, 11, 645-651.	1.8	16
498	DNA-modified Carbon Nanotubes for Self-assembling and Biosensing Applications. Synthetic Metals, 2005, 154, 17-20.	2.1	16
499	Reversible adsorption of conjugated amphiphilic dendrimers onto reduced graphene oxide (rGO) for fluorescence sensing. Soft Matter, 2011, 7, 8352.	1.2	16
500	Multifunctional Conjugated Polymers with Mainâ€Chain Donors and Sideâ€Chain Acceptors for Dye Sensitized Solar Cells (DSSCs) and Organic Photovoltaic Cells (OPVs). Macromolecular Rapid Communications, 2011, 32, 1809-1814.	2.0	16
501	Aggregationâ€Induced Emission for Highly Selective and Sensitive Fluorescent Biosensing and Cell Imaging. Journal of Polymer Science Part A, 2017, 55, 653-659.	2.5	16
502	Electrochemical properties of aligned nanotube arrays: basis of new electromechanical actuators. , 2000, , .		15
503	Carbon Nanotube Supercapacitors. , 0, , .		15
504	Hydrophilic Cucurbit[7]uril-Pseudorotaxane-Anchored-Monolayer-Protected Gold Nanorods. European Journal of Inorganic Chemistry, 2013, 2013, 2682-2686.	1.0	15

#	Article	IF	CITATIONS
505	Sensor arrays from multicomponent micropatterned nanoparticles and graphene. Nanotechnology, 2013, 24, 444010.	1.3	15
506	Onâ€Chip Microsupercapacitors Based on Coordination Polymer Frameworks for Alternating Current Lineâ€Filtering. Angewandte Chemie - International Edition, 2017, 56, 6381-6383.	7.2	15
507	Metalated graphene nanoplatelets and their uses as anode materials for lithium-ion batteries. 2D Materials, 2017, 4, 014002.	2.0	15
508	CO 2 Overall Splitting by a Bifunctional Metalâ€Free Electrocatalyst. Angewandte Chemie, 2018, 130, 13319-13323.	1.6	15
509	Highly sensitive and selective electrochemical immunosensors by substrate-enhanced electroless deposition of metal nanoparticles onto three-dimensional graphene@Ni foams. Science Bulletin, 2019, 64, 1272-1279.	4.3	15
510	Collisional processes between the Qiangtang Block and the Lhasa Block: Insights from structural analysis of the Bangong–Nujiang Suture Zone, central Tibet. Geological Journal, 2019, 54, 946-960.	0.6	15
511	3D Vertically Aligned CNT/Graphene Hybrids from Layerâ€by‣ayer Transfer for Supercapacitors. Particle and Particle Systems Characterization, 2017, 34, 1700131.	1.2	15
512	Promoting CO ₂ Electroreduction Kinetics on Atomically Dispersed Monovalent Zn ^I Sites by Rationally Engineering Protonâ€Feeding Centers. Angewandte Chemie, 2022, 134, .	1.6	15
513	Aggregation in conducting copolymer solutions. Journal of Polymer Science, Part B: Polymer Physics, 1993, 31, 3-15.	2.4	14
514	Radiation chemistry for microfabrication of conjugated polymers and carbon nanotubes. Radiation Physics and Chemistry, 2001, 62, 55-68.	1.4	14
515	Nanoscale Aggregation of Fullerene in Nafion Membrane. Langmuir, 2002, 18, 9017-9021.	1.6	14
516	Low-Temperature, Controlled Synthesis of Carbon Nanotubes. Small, 2005, 1, 274-276.	5.2	14
517	Controlled preparation and electron emission properties of three-dimensional micropatterned aligned carbon nanotubes. Applied Physics Letters, 2006, 89, 103103.	1.5	14
518	Efficient dispersion of singlewalled carbon nanotubes by novel amphiphilic dendrimers in water and substitution of the pre-adsorbed dendrimers with conventional surfactants and lipids. Chemical Communications, 2010, 46, 7924.	2.2	14
519	Large-Displacement Indentation Testing of Vertically Aligned Carbon Nanotube Arrays. Experimental Mechanics, 2012, 52, 1551-1554.	1.1	14
520	Carbon Nanomaterials: Carbon Nanomaterials for Advanced Energy Conversion and Storage (Small) Tj ETQq0 0 () rgBT /Ove	erlock 10 Tf 5
521	Boosting electrocatalytic activities of plasmonic metallic nanostructures by tuning the kinetic pre-exponential factor. Journal of Catalysis, 2017, 354, 160-168.	3.1	14

#	Article	IF	CITATIONS
523	Carbon-supported layered double hydroxide nanodots for efficient oxygen evolution: Active site identification and activity enhancement. Nano Research, 2021, 14, 3329-3336.	5.8	14
524	Turn on behavior of light emitting electrochemical cells. Synthetic Metals, 1999, 102, 1138-1139.	2.1	13
525	pH and Temperature Modulated Aggregation of Hydrophilic Gold Nanorods with Perylene Dyes and Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117, 6752-6758.	1.5	13
526	Development of Y-shaped peptide for constructing nanoparticle systems targeting tumor-associated macrophages <i>in vitro</i> and <i>in vivo</i> . Materials Research Express, 2014, 1, 025007.	0.8	13
527	Re-shaping graphene hydrogels for effectively enhancing actuation responses. Nanoscale, 2015, 7, 12372-12378.	2.8	13
528	Targeted Defect Synthesis for Improved Electrocatalytic Performance. CheM, 2020, 6, 1849-1851.	5.8	13
529	Random coils of polyisoprene in solution—a small angle x-ray scattering study. European Polymer Journal, 1993, 29, 645-651.	2.6	12
530	Mechanical characterization device forin situmeasurement of nanomechanical properties of micro/nanostructures. Applied Physics Letters, 2006, 89, 073103.	1.5	12
531	Carbon Nanotube Biosensors. , 2006, , 171-201.		12
532	Layered Graphene/Quantum Dots: Nanoassemblies for Highly Efficient Solar Cells. ChemSusChem, 2010, 3, 797-799.	3.6	12
533	Polymer composites with high haze and high transmittance. Polymer Chemistry, 2015, 6, 6632-6636.	1.9	12
534	A turn-on fluorescent lysine nanoprobe based on the use of the Alizarin Red aluminum(III) complex conjugated to graphene oxide, and its application to cellular imaging of lysine. Mikrochimica Acta, 2017, 184, 3521-3528.	2.5	12
535	Multifunctional luminescent nanofibres from Eu3+-doped La2O2SO4 with enhanced oxygen storage capability. Journal of Alloys and Compounds, 2017, 695, 202-207.	2.8	12
536	Semicrystalline Conjugated Polymers with Wellâ€Defined Active Sites for Nitrogen Fixation in a Seawater Electrolyte. Advanced Materials, 2022, 34, .	11.1	12
537	Selective adsorption of nitro-substituted aromatics and accelerated hydrolysis of 4-nitrophenyl acetate on carbon surfaces. New Journal of Chemistry, 2001, 25, 887-889.	1.4	11
538	Hexakisaddu ct C60–Ag nanocomposite: fabrication and optical limiting effect. Chemical Physics Letters, 2002, 356, 175-180.	1.2	11
539	Charge Transfer Complex of TTF arbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2003, 11, 89-93.	1.0	11
540	Porous Graphene Oxide Films Prepared via the Breath-Figure Method: A Simple Strategy for Switching Access of Redox Species to an Electrode Surface. ACS Applied Materials & Interfaces, 2020, 12, 55181-55188.	4.0	11

#	Article	IF	CITATIONS
541	A facile route to fullerol-containing polymers. Synthetic Metals, 1997, 86, 2277-2278.	2.1	10
542	Surface analysis of a well-aligned carbon nanotube film by positron-annihilation induced Auger-electron spectroscopy. Applied Surface Science, 2002, 194, 291-295.	3.1	10
543	Aligned carbon nanotubes for multifunctional nanocomposites and nanodevices: from plastic optoelectronics to bioceramics. Advances in Applied Ceramics, 2008, 107, 177-189.	0.6	10
544	Donor–Acceptor Nanocarbon Ensembles to Boost Metalâ€Free Allâ€pH Hydrogen Evolution Catalysis by Combined Surface and Dual Electronic Modulation. Angewandte Chemie, 2019, 131, 16363-16368.	1.6	10
545	Tactile UV―and Solarâ€Light Multiâ€5ensing Rechargeable Batteries with Smart Self onditioned Charge and Discharge. Angewandte Chemie, 2019, 131, 9349-9354.	1.6	10
546	Copolymerâ€Induced Intermolecular Charge Transfer: Enhancing the Activity of Metalâ€Free Catalysts for Oxygen Reduction. Chemistry - A European Journal, 2019, 25, 5652-5657.	1.7	10
547	Fiberâ€Shaped Energyâ€Storage Devices: Recent Advances in Fiberâ€Shaped Supercapacitors and Lithiumâ€Ion Batteries (Adv. Mater. 5/2020). Advanced Materials, 2020, 32, 2070037.	11.1	10
548	Covalently Attached Thin Coatings Comprising Saccharide and Alkylene Oxide Segments. , 1996, , 147-156.		10
549	Assessment of Human Lung Macrophages After Exposure to Multi-Walled Carbon Nanotubes Part I. Cytotoxicity. Nanoscience and Nanotechnology Letters, 2011, 3, 88-93.	0.4	10
550	Nextâ€Generation Energy Harvesting and Storage Technologies for Robots Across All Scales. Advanced Intelligent Systems, 2023, 5, .	3.3	10
551	Electrochemical generation of conducting polymer patterns on plasma modified surfaces. Synthetic Metals, 1997, 85, 1379-1380.	2.1	9
552	Controlled Surface Engineering and Device Fabrication of Optoelectronic Polymers and Carbon Nanotubes by Plasma Processes. Plasma Processes and Polymers, 2005, 2, 279-292.	1.6	9
553	Template-free electrodeposition of multicomponent metal nanoparticles for region-specific growth of interposed carbon nanotube micropatterns. Nanotechnology, 2005, 16, 2111-2117.	1.3	9
554	Luminescent Dendrons with Oligo(phenylenevinylene) Core Branches and Oligo(ethylene oxide) Terminal Chains. Macromolecules, 2005, 38, 9389-9392.	2.2	9
555	Surface Modification of Aligned Carbon Nanotube Arrays for Electron Emitting Applications. Synthetic Metals, 2005, 154, 229-232.	2.1	9
556	Metalized Nanotube Tips Improve Through Thickness Thermal Conductivity in Adhesive Joints. Journal of Nanoscience and Nanotechnology, 2009, 9, 1727-1733.	0.9	9
557	Controlled removal of individual carbon nanotubes from vertically aligned arrays for advanced nanoelectrodes. Journal of Materials Chemistry, 2010, 20, 3595.	6.7	9
558	<i>In situ</i> electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry. Journal of Synchrotron Radiation, 2017, 24, 787-795.	1.0	9

#	Article	IF	CITATIONS
559	Understanding of catalytic ROS generation from defect-rich graphene quantum-dots for therapeutic effects in tumor microenvironment. Journal of Nanobiotechnology, 2021, 19, 340.	4.2	9
560	High-voltage lithium-ion capacitors enabled by a multifunctional phosphite electrolyte additive. Energy Storage Materials, 2022, 46, 431-442.	9.5	9
561	Organic modification of carbon nanotubes. Science Bulletin, 2002, 47, 441.	1.7	8
562	The Dependence of Benzo-15-Crown-5 Ether-Containing Oligo Paraphenylene Vinylene (CE-OPV) Emission Upon Complexation with Metal Ions in Solution. Journal of Fluorescence, 2003, 13, 427-436.	1.3	8
563	Photo-induced formation and self-assembling of gold nanoparticles in aqueous solution of amphiphilic dendrimers with oligo(p-phenylene vinylene) core branches and oligo(ethylene oxide) terminal chains. Nanotechnology, 2007, 18, 365605.	1.3	8
564	Multicomponent and Multidimensional Carbon Nanotube Micropatterns by Dry Contact Transfer. Journal of Nanoscience and Nanotechnology, 2007, 7, 1573-1580.	0.9	8
565	Optoelectronic property modeling of carbon nanotubes grafted with gold nanoparticles. Nanotechnology, 2008, 19, 245702.	1.3	8
566	Iron nanoparticle driven spin-valve behavior in aligned carbon nanotube arrays. Applied Physics Letters, 2008, 93, .	1.5	8
567	Conducting Polymer and Polymer/CNT Composite Nanofibers by Electrospinning. ACS Symposium Series, 2009, , 39-58.	0.5	8
568	Development of an Electrochemical-Based Aspartate Aminotransferase Nanoparticle Ir-C Biosensor for Screening of Liver Diseases. Biosensors, 2012, 2, 234-244.	2.3	8
569	Determination of Ag+ ions by a graphene oxide based dual-output nanosensor with high selectivity. RSC Advances, 2016, 6, 36218-36222.	1.7	8
570	Integrated Energy Devices: 3D Heteroatomâ€Doped Carbon Nanomaterials as Multifunctional Metalâ€Free Catalysts for Integrated Energy Devices (Adv. Mater. 13/2019). Advanced Materials, 2019, 31, 1970094.	11.1	8
571	Highâ€Performance K–CO ₂ Batteries Based on Metalâ€Free Carbon Electrocatalysts. Angewandte Chemie, 2020, 132, 3498-3502.	1.6	8
572	Conjugation of polydienes by oxidants other than iodine. Synthetic Metals, 1997, 86, 1893-1894.	2.1	7
573	Photogeneration of conducting polymer patterns in iodinated cis-1,4-polybutadiene films. Thin Solid Films, 2002, 417, 188-193.	0.8	7
574	Multicomponent Micropatterns or Carbon Nanotubes. Synthetic Metals, 2005, 154, 225-228.	2.1	7
575	Superior Capacitive Performance of Aligned Carbon Nanotubes in Ionic Liquids. ECS Transactions, 2007, 6, 257-261.	0.3	7
576	Conformal load-bearing polymer-carbon nanotube antennas and RF front-ends. Digest / IEEE Antennas and Propagation Society International Symposium, 2009, , .	0.0	7

#	Article	IF	CITATIONS
577	Modelling and simulations of adhesion between carbon nanotubes and surfaces. Molecular Simulation, 2009, 35, 520-524.	0.9	7
578	Tunable assembly of carbon nanospheres on single-walled carbon nanotubes. Nanotechnology, 2010, 21, 305602.	1.3	7
579	Carbon Nanotube Rubber Stays Rubbery in Extreme Temperatures. Angewandte Chemie - International Edition, 2011, 50, 4744-4746.	7.2	7
580	Study on the combustion process and work capacity of a micro free-piston engine. Journal of Mechanical Science and Technology, 2015, 29, 4993-5000.	0.7	7
581	Alkylation of phenol with tert-butyl alcohol catalyzed by ionic liquid-supported MCM-41 with different pore sizes. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125, 351-364.	0.8	7
582	Controlled Surface Elemental Distribution Enhances Catalytic Activity and Stability. Matter, 2019, 1, 1447-1449.	5.0	7
583	Electrochemical behaviour of polyacetylene–polyisoprene copolymers. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 277-285.	1.7	6
584	Neutron reflectivity study of adsorbed diblock copolymers. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1994, 16, 721-726.	0.4	6
585	Control of fluorescence emission color of benzo 15-crown-5 ether substituted oligo phenylene vinylene–ceramic nanocomposites. Polymer, 2005, 46, 7176-7184.	1.8	6
586	Spin-valve behavior in porous alumina-embedded carbon nanotube array with cobalt nanoparticle spin injectors. Synthetic Metals, 2010, 160, 235-237.	2.1	6
587	Electrochemistry of carboxylated nanodiamond films. Science China Chemistry, 2012, 55, 2445-2449.	4.2	6
588	Molecular engineering of conjugated polymers for solar cells and fieldâ€effect transistors: Sideâ€chain versus mainâ€chain electron acceptors. Journal of Polymer Science Part A, 2012, 50, 271-279.	2.5	6
589	Oxygen Reduction: Nitrogenâ€Đoped Holey Graphitic Carbon from 2D Covalent Organic Polymers for Oxygen Reduction (Adv. Mater. 20/2014). Advanced Materials, 2014, 26, 3356-3356.	11.1	6
590	Fluorine: Edge-Fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dye-Sensitized Solar Cells and Lithium Ion Batteries (Adv. Funct. Mater. 8/2015). Advanced Functional Materials, 2015, 25, 1328-1328.	7.8	6
591	Enhanced ketalization activity of cyclohexanone and ethanediol over immobilized ionic liquid in mesoporous materials. Korean Journal of Chemical Engineering, 2017, 34, 1358-1365.	1.2	6
592	Bifunctional Catalysts for Metalâ€Air Batteries. Batteries and Supercaps, 2019, 2, 270-271.	2.4	6
593	Sacrificial Template Synthesis of Two-Dimensional Few-Layer MoSe ₂ Coupled with Nitrogen-Doped Carbon Sheets for High-Performance Sodium Ion Hybrid Capacitors. ACS Applied Energy Materials, 2021, 4, 14735-14745.	2.5	6
594	Re-carbon, up-carbon, de-carbon: Plasma-electrified roll-to-roll cleaner production of vertical graphenes and syngas from greenhouse gas mixes. Carbon, 2022, 197, 301-310.	5.4	6

#	Article	IF	CITATIONS
595	Thermal cis-trans isomerization and temperature-dependent phase behaviour of polyisoprene-polyacetylene solutions. Macromolecular Chemistry and Physics, 1997, 198, 1723-1738.	1.1	5
596	Photochemical Generation of Polymeric Alkyl-C60 Radicals:  ESR Detection and Identification. Journal of Physical Chemistry B, 2001, 105, 2129-2134.	1.2	5
597	<title>Electrochemically driven actuators from conducting polymers, hydrogels, and carbon nanotubes</title> . , 2001, , .		5
598	Large clusters and hollow microfibers by multicomponent self-assembly of citrate stabilized gold nanoparticles with temperature-responsive amphiphilic dendrimers. Journal of Materials Chemistry, 2012, 22, 13365.	6.7	5
599	Graphene Oxide Derivatives: Hole and Electron Extraction Layers Based on Graphene Oxide Derivatives for High-Performance Bulk Heterojunction Solar Cells (Adv. Mater. 17/2012). Advanced Materials, 2012, 24, 2227-2227.	11.1	5
600	Efficient energy transfer between amphiphilic dendrimers with oligo(<i>p</i> â€phenylenevinylene) core branches and oligo(ethylene oxide) termini in micelles. Journal of Polymer Science Part A, 2013, 51, 168-175.	2.5	5
601	On the rate dependence of mechanical properties of aligned carbon nanotube arrays. Mechanics of Time-Dependent Materials, 2015, 19, 229-242.	2.3	5
602	Fabrication and Friction Coefficient of Graphene Oxide Reinforced Hydroxyapatite Composite. Journal of Nanoscience and Nanotechnology, 2018, 18, 1893-1900.	0.9	5
603	Advancing Materials Electrochemistry for Chemical Transformation. Advanced Materials, 2019, 31, e1903622.	11.1	5
604	Facile Synthesis of Acetal Over a Supported Novel BrÃ,nsted and Lewis Acid Ionic Liquid Catalyst. Journal of Nanoscience and Nanotechnology, 2019, 19, 4396-4405.	0.9	5
605	Conformations of Block Copolymers Terminally Adsorbed at the Solid-Liquid Interface. Journal of Macromolecular Science - Pure and Applied Chemistry, 1992, 29, 139-146.	1.2	4
606	Development-free vapor laser photolithography with 0.4 μm resolution. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 724.	1.6	4
607	Phase separation of polyisoprene-polyacetylene copolymers. Synthetic Metals, 1997, 84, 957-960.	2.1	4
608		2.1	4
609	Title is missing!. Australian Journal of Chemistry, 2001, 54, 11.	0.5	4
610	Novel Secondary Dopants for Camphorsulfonic Acid Doped Polyaniline Emeraldine Salts. Australian Journal of Chemistry, 2002, 55, 253.	0.5	4
611	Photovoltaic properties of MEH-PPV doped with new methanofullerene derivatives. Synthetic Metals, 2003, 137, 1527-1528.	2.1	4
612	Aligned/micropatterned carbon nanotube arrays: surface functionalization and electrochemical sensing. , 2005, , .		4

#	Article	IF	CITATIONS
613	Assessment of Human Lung Macrophages After Exposure to Multi-Walled Carbon Nanotubes Part II. DNA Damage. Nanoscience and Nanotechnology Letters, 2011, 3, 94-98.	0.4	4
614	Structural geology and tectonics in marine science: Perspectives in the research of deep sea and deep interior. Journal of Ocean University of China, 2012, 11, 257-266.	0.6	4
615	Vertically-Aligned Carbon Nanotubes for Electrochemical Energy Conversion and Storage. Nanoscience and Technology, 2016, , 253-270.	1.5	4
616	Twoâ€Dimensional Materials: A Powerful Platform for Energy Applications. ChemNanoMat, 2017, 3, 338-339.	1.5	4
617	Carbon Nanotube Energy Applications. , 2019, , 695-728.		4
618	Polymer Nanowires and Nanofibers. , 2003, , 269-288.		4
619	Gradient Supramolecular Preorganization Endows the Derived N/P Dual-Doped Carbon Nanosheets with Tunable Storage Performance toward Sodium-Ion Batteries. Industrial & Engineering Chemistry Research, 2022, 61, 6997-7008.	1.8	4
620	Chemistry of Carbon Nanotubes. ChemInform, 2003, 34, no.	0.1	3
621	Carbon-nanotube electron emitters for display applications. Journal of the Society for Information Display, 2005, 13, 709.	0.8	3
622	C60 and carbon nanotube sensors. , 2006, , 525-575.		3
623	Metal-Free Electrocatalysts for Oxygen Reduction. Lecture Notes in Energy, 2013, , 375-389.	0.2	3
624	Dynamic mechanism of tectonic inversion and implications for oil–gas accumulation in the Xihu Sag, East China Sea Shelf Basin: Insights from numerical modelling. Geological Journal, 2018, 53, 225-239.	0.6	3
625	Multi-TpyCo ²⁺ -based conductive supramolecular hydrogels constructed by "bridge bond― for ultrastable rechargeable Zn-air battery over 1100 h. Journal of Materials Chemistry A, O, , .	5.2	3
626	Simulation analysis of ESR spectrum of polymer alkyl-C60 radicals formed by photoinitiated reactions of low-density polyethylene. Applied Magnetic Resonance, 2000, 19, 59-67.	0.6	2
627	Amphiphilic light-emitting dendrons with oligo(phenylene vinylene) branches and oligo(ethylene) Tj ETQq1 1 0.7	84314 rgE	3T /Overlock
628	Synthesis of Thiol Surfactant with Tunable Length as a Stabilizer of Gold Nanoparticles. ACS Symposium Series, 2008, , 41-54.	0.5	2
629	Comparison Study of Phenylquinoline-based Iridium(III) Complexes for Solution Processable Phosphorescent Organic Light-Emitting Diodes by PEDOT:PSS and Graphene Oxide as a Hole Transport Layer. Molecular Crystals and Liquid Crystals, 2015, 621, 8-16.	0.4	2
630	Power Generation: Polymer–Metal Schottky Contact with Directâ€Current Outputs (Adv. Mater. 7/2016). Advanced Materials, 2016, 28, 1524-1524.	11.1	2

#	Article	IF	CITATIONS
631	Carbonaceous materials for efficient electrocatalysis. , 2019, , 375-394.		2
632	Variation in Flame Temperature with Burner Stabilization in 1D Premixed Dimethyl Ether/Air Flames Measured by Spontaneous Raman Scattering. Energy & Fuels, 2019, 33, 11976-11984.	2.5	2
633	Hole-punching for enhancing electrocatalytic activities of 2D graphene electrodes: Less is more. Journal of Chemical Physics, 2020, 153, 074701.	1.2	2
634	Rate-Dependent, Large-Displacement Deformation of Vertically Aligned Carbon Nanotube Arrays. Conference Proceedings of the Society for Experimental Mechanics, 2013, , 101-107.	0.3	2
635	A chemical route for producing polyacetylene-polypyrrole conducting composites. Journal of Materials Science Letters, 1992, 11, 872-874.	0.5	1
636	From Conducting Polymers to Carbon Nanotubes: New Horizons in Plastic Microelectronics and Carbon Nanoelectronics. , 2002, , 93-111.		1
637	Combining Nanostructured Carbon Electrodes and Ionic Liquid Electrolytes to Develop New Electrochemical Capacitors. ECS Transactions, 2009, 16, 69-75.	0.3	1
638	The Chemistry of Energy Conversion and Storage. Chemistry - an Asian Journal, 2016, 11, 1119-1119.	1.7	1
639	<i>Mono</i> - and <i>Bis</i> -Terpyridine-Based Dimer and Metallo-Organic Polymers as Ionic Templates for Preparation of Multi-Metallic Au Nanocluster and Nanowires. Journal of Nanoscience and Nanotechnology, 2016, 16, 2613-2622.	0.9	1
640	Innenrücktitelbild: Tactile UV―and Solarâ€Light Multiâ€5ensing Rechargeable Batteries with Smart Selfâ€Conditioned Charge and Discharge (Angew. Chem. 27/2019). Angewandte Chemie, 2019, 131, 9389-9389.	1.6	1
641	Nanoporous graphitic carbon for efficient supercapacitors and related energy applications. , 2021, , 143-178.		1
642	Advanced syntheses and microfabrications of conjugated polymers, C60-containing polymers and carbon nanotubes for optoelectronic applications. , 1999, 10, 357.		1
643	Surface Adsorption and Replacement of Acid-Oxidized Single-Walled Carbon Nanotubes and Poly(vinyl) Tj ETQq1 1	0.784314	4_rgBT /Ov€
644	<title>Plasma polymerization and microfabrication of electroactive polymers and carbon nanotubes</title> . , 2001, 4234, 186.		0
645	<title>Electroluminescent polymers and carbon nanotubes for flat panel displays</title> ., 2001, , .		0
646	<title>Carbon nanotube sensors</title> . , 2002, 4695, 237.		0
647	Microscopic and Macroscopic Structures of Carbon Nanotubes Produced by Pyrolysis of Iron Phthalocyanine. ChemInform, 2003, 34, no.	0.1	0
648	Functionalization and applications of carbon nanotubes. , 2006, , 191-234.		0

#	Article	IF	CITATIONS
649	Semiconductive properties of DNA-based materials. Proceedings of SPIE, 2008, , .	0.8	0
650	Redox Couple of DNA on Multiwalled Carbon Nanotube Modified Electrode. Electroanalysis, 2009, 21, 1641-1645.	1.5	0
651	Controlled growth and modification of aligned carbon nanotubes for multifunctional nanocomposites and nanodevices. , 2010, , .		0
652	CHEMISTRY OF VERTICALLY-ALIGNED CARBON NANOTUBES. , 2011, , 219-243.		0
653	Graphitic Carbon Materials for Energy Applications. , 2013, , .		0
654	Fluorescence Quenching: Size―and Shapeâ€Dependent Fluorescence Quenching of Gold Nanoparticles on Perylene Dye (Advanced Optical Materials 8/2013). Advanced Optical Materials, 2013, 1, 602-602.	3.6	0
655	Selective Functionalization and Modification of Carbon Nanomaterials by Plasma Techniques. , 2017, , 337-358.		0
656	Coming up for Air: Breathing Air with Metal for Energy Storage. Batteries and Supercaps, 2019, 2, 897-898.	2.4	0
657	Innentitelbild: Donor–Acceptor Nanocarbon Ensembles to Boost Metalâ€Free Allâ€pH Hydrogen Evolution Catalysis by Combined Surface and Dual Electronic Modulation (Angew. Chem. 45/2019). Angewandte Chemie, 2019, 131, 16086-16086.	1.6	0
658	Topological Defectâ€Rich Carbon as a Metalâ€Free Cathode Catalyst for Highâ€Performance Liâ€CO ₂ Batteries (Adv. Energy Mater. 30/2021). Advanced Energy Materials, 2021, 11, 2170120.	10.2	0
659	From Conducting Polymers to Carbon Nanotubes: New Horizons in Plastic Microelectronics and Carbon Nanoelectronics. , 2002, , 93-111.		0
660	Elastic–Plastic Behaviors of Vertically Aligned Carbon Nanotube Arrays by Large-Displacement Indentation Test. Solid Mechanics and Its Applications, 2014, , 323-339.	0.1	0