Steeve Provencher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1214236/publications.pdf

Version: 2024-02-01

94 papers

7,067 citations

66234 42 h-index 82 g-index

95 all docs 95 docs citations

95 times ranked 6047 citing authors

#	Article	IF	CITATIONS
1	BET Protein Inhibition for Pulmonary Arterial Hypertension: A Pilot Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1357-1360.	2.5	15
2	PARP1-PKM2 Axis Mediates Right Ventricular Failure Associated With Pulmonary Arterial Hypertension. JACC Basic To Translational Science, 2022, 7, 384-403.	1.9	14
3	Pulmonary tumor thrombotic microangiopathy: A systematic review of the literature. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2021, 5, 20-27.	0.2	2
4	Oxidized DNA Precursors Cleanup by NUDT1 Contributes to Vascular Remodeling in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 614-627.	2.5	22
5	Direct oral anticoagulants in the treatment of acute venous thromboembolism in patients with obesity: A systematic review with meta-analysis. Pharmacological Research, 2021, 163, 105317.	3.1	15
6	Twice- or Once-Daily Dosing of Direct Oral Anticoagulants, a systematic review and meta-analysis. Thrombosis Research, 2021, 197, 24-32.	0.8	17
7	Pulmonary Disease, Pulmonary Hypertension and Atrial Fibrillation. Cardiac Electrophysiology Clinics, 2021, 13, 141-153.	0.7	14
8	Implication of EZH2 in the Pro-Proliferative and Apoptosis-Resistant Phenotype of Pulmonary Artery Smooth Muscle Cells in PAH: A Transcriptomic and Proteomic Approach. International Journal of Molecular Sciences, 2021, 22, 2957.	1.8	9
9	$17\hat{l}^2$ -estradiol and estrogen receptor \hat{l}^\pm protect right ventricular function in pulmonary hypertension via BMPR2 and apelin. Journal of Clinical Investigation, 2021, 131, .	3.9	47
10	Preclinical Investigation of Trifluoperazine as a Novel Therapeutic Agent for the Treatment of Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 2021, 22, 2919.	1.8	9
11	Exercise intolerance in pulmonary arterial hypertension: insight into central and peripheral pathophysiological mechanisms. European Respiratory Review, 2021, 30, 200284.	3.0	16
12	Fetal Gene Reactivation in Pulmonary Arterial Hypertension: GOOD, BAD, or BOTH?. Cells, 2021, 10, 1473.	1.8	9
13	Venous thromboembolism in COVID-19 compared to non-COVID-19 cohorts: A systematic review with meta-analysis. Vascular Pharmacology, 2021, 139, 106882.	1.0	33
14	Computational repurposing of therapeutic small molecules from cancer to pulmonary hypertension. Science Advances, 2021, 7, eabh 3794.	4.7	16
15	Beyond the Lungs: Systemic Manifestations of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 148-157.	2.5	53
16	Clinical value of non-coding RNAs in cardiovascular, pulmonary, and muscle diseases. American Journal of Physiology - Cell Physiology, 2020, 318, C1-C28.	2.1	26
17	Role of PKM2-PARP1/Inflammation/Oxidative DNA Damage Axis in the Pathogenesis of Right Ventricular Failure Associated with Pulmonary Arterial Hypertension. , 2020, , .		1
18	Triaging Access to Critical Care Resources in Patients With Chronic Respiratory Diseases in the Event of a Major COVID-19 Surge. Chest, 2020, 158, 2270-2274.	0.4	12

#	Article	IF	Citations
19	Identification of Long Noncoding RNA H19 as a New Biomarker and Therapeutic Target in Right Ventricular Failure in Pulmonary Arterial Hypertension. Circulation, 2020, 142, 1464-1484.	1.6	96
20	Pulmonary hypertension thresholds: time to lower further?. Lancet Respiratory Medicine, the, 2020, 8, 834-836.	5.2	4
21	Position statement from the Canadian Thoracic Society (CTS) on clinical triage thresholds in respiratory disease patients in the event of a major surge during the COVID-19 pandemic. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2020, 4, 214-225.	0.2	3
22	Long Non-Coding RNA H19 Promotes Right Ventricular Failure in PAH., 2020,,.		1
23	Novel insights on the pulmonary vascular consequences of COVID-19. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L277-L288.	1.3	125
24	Continuous reduction in cerebral oxygenation during endurance exercise in patients with pulmonary arterial hypertension. Physiological Reports, 2020, 8, e14389.	0.7	7
25	Epigenetic Metabolic Reprogramming of Right Ventricular Fibroblasts in Pulmonary Arterial Hypertension. Circulation Research, 2020, 126, 1723-1745.	2.0	83
26	Reply to Chen et al.: BET Signaling: A Novel Therapeutic Target for Pulmonary Hypertension?. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1313-1314.	2.5	0
27	DOAC compared to LMWH in the treatment of cancer related-venous thromboembolism: a systematic review and meta-analysis. Journal of Thrombosis and Thrombolysis, 2020, 50, 661-667.	1.0	23
28	PIM1 (Moloney Murine Leukemia Provirus Integration Site) Inhibition Decreases the Nonhomologous End-Joining DNA Damage Repair Signaling Pathway in Pulmonary Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 783-801.	1.1	16
29	Pulmonary vascular diseases. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2020, 4, S2-S5.	0.2	0
30	Diagnosis of chronic thromboembolic pulmonary hypertension: A Canadian Thoracic Society clinical practice guideline update. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2019, 3, 177-198.	0.2	13
31	Extended Anticoagulation for VTE. Chest, 2019, 155, 1199-1216.	0.4	26
32	Inhibition of CHK 1 (Checkpoint Kinase 1) Elicits Therapeutic Effects in Pulmonary Arterial Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1667-1681.	1.1	40
33	Multicenter Preclinical Validation of BET Inhibition for the Treatment of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 910-920.	2.5	100
34	Extended anticoagulation for the secondary prevention of venous thromboembolic events: An updated network meta-analysis. PLoS ONE, 2019, 14, e0214134.	1.1	25
35	Long Non-Coding RNA H19 in the Pathogenesis of Right Ventricular Failure Associated with Pulmonary Arterial Hypertension -A Putative Novel Biomarker and Therapeutic Target , 2019, , .		0
36	Early Evidence for the Role of IncRNA TUG1 in Vascular Remodelling in Pulmonary Hypertension. Canadian Journal of Cardiology, 2019, 35, 1433-1434.	0.8	7

#	Article	IF	CITATIONS
37	TAKling GDF-15 and skeletal muscle atrophy in pulmonary hypertension: are we there yet?. Thorax, 2019, 74, 103-105.	2.7	5
38	Outcomes following a negative computed tomography pulmonary angiography according to pulmonary embolism prevalence: a metaâ€analysis of the management outcome studies. Journal of Thrombosis and Haemostasis, 2018, 16, 1107-1120.	1.9	5
39	Mitochondrial HSP90 Accumulation Promotes Vascular Remodeling in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 90-103.	2.5	75
40	Trial Duration and Risk Reduction in Combination Therapy Trials for Pulmonary Arterial Hypertension. Chest, 2018, 153, 1142-1152.	0.4	4
41	FOXM1 promotes pulmonary artery smooth muscle cell expansion in pulmonary arterial hypertension. Journal of Molecular Medicine, 2018, 96, 223-235.	1.7	62
42	Standards and Methodological Rigor in Pulmonary Arterial Hypertension Preclinical and Translational Research. Circulation Research, 2018, 122, 1021-1032.	2.0	111
43	Loss of SMAD3 Promotes Vascular Remodeling in Pulmonary Arterial Hypertension via MRTF Disinhibition. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 244-260.	2.5	52
44	Dual ET _A /ET _B blockade with macitentan improves both vascular remodeling and angiogenesis in pulmonary arterial hypertension. Pulmonary Circulation, 2018, 8, 1-15.	0.8	19
45	Therapeutic Value of ASK1 Inhibition in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 284-286.	2.5	13
46	Pulmonary hypertension-targeted therapies in heart failure: A systematic review and meta-analysis. PLoS ONE, 2018, 13, e0204610.	1.1	13
47	Management of Severe Pulmonary Hypertensive Disease for Surgical and Nonsurgical Procedures. International Anesthesiology Clinics, 2018, 56, e28-e55.	0.3	4
48	Interpreting risk reduction in clinical trials for pulmonary arterial hypertension. European Respiratory Review, 2018, 27, 180020.	3.0	3
49	Implication of Inflammation and Epigenetic Readers in Coronary Artery Remodeling in Patients With Pulmonary Arterial Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1513-1523.	1.1	72
50	The cancer theory of pulmonary arterial hypertension. Pulmonary Circulation, 2017, 7, 285-299.	0.8	154
51	Combination therapy in pulmonary arterial hypertension: recent accomplishments and future challenges. Pulmonary Circulation, 2017, 7, 312-325.	0.8	37
52	Compromised Cerebrovascular Regulation and Cerebral Oxygenation in Pulmonary Arterial Hypertension. Journal of the American Heart Association, 2017, 6, .	1.6	32
53	HDAC6: A Novel Histone Deacetylase Implicated in Pulmonary Arterial Hypertension. Scientific Reports, 2017, 7, 4546.	1.6	70
54	Clinical trial research in focus: improving drug development and trial design in pulmonary arterial hypertension. Lancet Respiratory Medicine, the, 2017, 5, 544-546.	5.2	2

#	Article	IF	CITATIONS
55	MicroRNA-138 and MicroRNA-25 Down-regulate Mitochondrial Calcium Uniporter, Causing the Pulmonary Arterial Hypertension Cancer Phenotype. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 515-529.	2.5	134
56	Translating Research into Improved Patient Care in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 583-595.	2.5	113
57	DNA Damage and Pulmonary Hypertension. International Journal of Molecular Sciences, 2016, 17, 990.	1.8	85
58	Role for Runt-related Transcription Factor 2 in Proliferative and Calcified Vascular Lesions in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1273-1285.	2.5	88
59	Combination therapy versus monotherapy for pulmonary arterial hypertension: a meta-analysis. Lancet Respiratory Medicine, the, 2016, 4, 291-305.	5.2	190
60	Potassium Channel Subfamily K Member 3 (KCNK3) Contributes to the Development of Pulmonary Arterial Hypertension. Circulation, 2016, 133, 1371-1385.	1.6	141
61	Diagnostic yield of nonâ€guided flexible bronchoscopy for peripheral pulmonary neoplasia. Thoracic Cancer, 2015, 6, 517-523.	0.8	13
62	Impaired Skeletal Muscle Oxygenation and Exercise Tolerance in Pulmonary Hypertension. Medicine and Science in Sports and Exercise, 2015, 47, 2273-2282.	0.2	43
63	Near-fatal haemoptysis as presentation of a giant intralobar pulmonary sequestration. European Respiratory Review, 2015, 24, 155-156.	3.0	6
64	Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension. Journal of Molecular Medicine, 2015, 93, 573-584.	1.7	53
65	Bromodomain-Containing Protein 4. Circulation Research, 2015, 117, 525-535.	2.0	143
66	Downregulation of MicroRNA-126 Contributes to the Failing Right Ventricle in Pulmonary Arterial Hypertension. Circulation, 2015, 132, 932-943.	1.6	173
67	Potassium channels in pulmonary arterial hypertension. European Respiratory Journal, 2015, 46, 1167-1177.	3.1	64
68	miR-223 reverses experimental pulmonary arterial hypertension. American Journal of Physiology - Cell Physiology, 2015, 309, C363-C372.	2.1	103
69	Current Treatment Approaches to Pulmonary Arterial Hypertension. Canadian Journal of Cardiology, 2015, 31, 460-477.	0.8	24
70	A miR-208–Mef2 Axis Drives the Decompensation of Right Ventricular Function in Pulmonary Hypertension. Circulation Research, 2015, 116, 56-69.	2.0	101
71	Quality of Life, Safety and Efficacy Profile of Thermostable Flolan in Pulmonary Arterial Hypertension. PLoS ONE, 2015, 10, e0120657.	1.1	9
72	Alternatives to the Six-Minute Walk Test in Pulmonary Arterial Hypertension. PLoS ONE, 2014, 9, e103626.	1.1	15

#	Article	IF	Citations
73	Role for DNA Damage Signaling in Pulmonary Arterial Hypertension. Circulation, 2014, 129, 786-797.	1.6	211
74	Sirtuin 3 Deficiency Is Associated with Inhibited Mitochondrial Function and Pulmonary Arterial Hypertension in Rodents and Humans. Cell Metabolism, 2014, 20, 827-839.	7.2	170
75	Impaired Angiogenesis and Peripheral Muscle Microcirculation Loss Contribute to Exercise Intolerance in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 318-328.	2.5	99
76	miRNAs in PAH: biomarker, therapeutic target or both?. Drug Discovery Today, 2014, 19, 1264-1269.	3.2	25
77	Effect of Pulmonary Arterial Hypertension-Specific Therapies on Health-Related Quality of Life. Chest, 2014, 146, 686-708.	0.4	43
78	The emergence of new therapeutic targets in pulmonary arterial hypertension: from now to the near future. Expert Review of Respiratory Medicine, 2013, 7, 43-55.	1.0	14
79	Signal Transduction in the Development of Pulmonary Arterial Hypertension. Pulmonary Circulation, 2013, 3, 278-293.	0.8	69
80	Anti-inflammatory and Immunosuppressive Agents in PAH. Handbook of Experimental Pharmacology, 2013, , 437-476.	0.9	24
81	Anti-inflammatory and Immunosuppressive Agents in PAH. Handbook of Experimental Pharmacology, 2013, 218, 437-476.	0.9	23
82	Signal Transducers and Activators of Transcription-3/Pim1 Axis Plays a Critical Role in the Pathogenesis of Human Pulmonary Arterial Hypertension. Circulation, 2011, 123, 1205-1215.	1.6	156
83	Role for miR-204 in human pulmonary arterial hypertension. Journal of Experimental Medicine, 2011, 208, 535-548.	4.2	487
84	Assessment of Daily Life Physical Activities in Pulmonary Arterial Hypertension. PLoS ONE, 2011, 6, e27993.	1.1	76
85	Effects of a Rehabilitation Program on Skeletal Muscle Function in Idiopathic Pulmonary Arterial Hypertension. Journal of Cardiopulmonary Rehabilitation and Prevention, 2010, 30, 319-323.	1.2	92
86	Peripheral muscle dysfunction in idiopathic pulmonary arterial hypertension. Thorax, 2010, 65, 113-117.	2.7	150
87	Stress Doppler Echocardiography in Relatives of Patients With Idiopathic and Familial Pulmonary Arterial Hypertension. Circulation, 2009, 119, 1747-1757.	1.6	205
88	Evaluation of Various Empirical Formulas for Estimating Mean Pulmonary Artery Pressure by Using Systolic Pulmonary Artery Pressure in Adults. Chest, 2009, 135, 760-768.	0.4	102
89	End Points and Clinical Trial Design in Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 2009, 54, S97-S107.	1.2	209
90	Changes in exercise haemodynamics during treatment in pulmonary arterial hypertension. European Respiratory Journal, 2008, 32, 393-398.	3.1	84

#	Article	IF	CITATIONS
91	Deleterious Effects of \hat{I}^2 -Blockers on Exercise Capacity and Hemodynamics in Patients With Portopulmonary Hypertension. Gastroenterology, 2006, 130, 120-126.	0.6	277
92	Long-term outcome with first-line bosentan therapy in idiopathic pulmonary arterial hypertension. European Heart Journal, 2006, 27, 589-595.	1.0	272
93	Heart rate responses during the 6-minute walk test in pulmonary arterial hypertension. European Respiratory Journal, 2006, 27, 114-120.	3.1	108
94	Long-Term Response to Calcium Channel Blockers in Idiopathic Pulmonary Arterial Hypertension. Circulation, 2005, 111, 3105-3111.	1.6	1,040