Laura Ribba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1214099/publications.pdf

Version: 2024-02-01

1163117 1199594 14 592 8 12 citations h-index g-index papers 15 15 15 612 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Breaking W/O emulsion with electrospun hierarchically porous PLA fibers. Emergent Materials, 2022, 5, $1507-1516$.	5.7	2
2	A Highly Efficient Nanostructured Sorbent of Sulfuric Acid from Ecofriendly Electrospun Poly(vinyl) Tj ETQq0 0 0	rgBT ₇ /Ove	rlogk 10 Tf 50
3	Biodegradable plastics in aquatic ecosystems: latest findings, research gaps, and recommendations. Environmental Research Letters, 2022, 17, 033003.	5.2	23
4	Processing and Properties of Starch-Based Thermoplastic Matrix for Green Composites. Materials Horizons, 2021, , 63-133.	0.6	O
5	Asymmetric biphasic hydrophobic/hydrophilic poly(lactic acid)–polyvinyl alcohol meshes with moisture control and noncytotoxic effects for wound dressing applications. Journal of Applied Polymer Science, 2019, 136, 47369.	2.6	12
6	Wetting a superomniphobic porous system. Soft Matter, 2019, 15, 8621-8626.	2.7	5
7	Ecofriendly E-Nose Based in PLA and Only 0.3 wt% of CNTs. Journal of Renewable Materials, 2019, 7, 355-363.	2.2	3
8	Electrospun Mats: From White to Transparent with a Drop. Macromolecular Materials and Engineering, 2018, 303, 1800237.	3.6	15
9	Disadvantages of Starch-Based Materials, Feasible Alternatives in Order to Overcome These Limitations. , 2017, , 37-76.		33
10	Improving PLA ductility using only 0.05% of CNTs and 0.25% of an azo-dye. Materials Letters, 2016, 182, 94-97.	2.6	8
11	Electrospun Nanofibrous Mats: From Vascular Repair to Osteointegration. Journal of Biomedical Nanotechnology, 2014, 10, 3508-3535.	1.1	28
12	Enhancement of the optical response in a biodegradable polymer/azo-dye film by the addition of carbon nanotubes. Journal Physics D: Applied Physics, 2014, 47, 135103.	2.8	21
13	Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydrate Polymers, 2011, 84, 203-210.	10.2	207
14	Physicoâ€Mechanical Properties of Biodegradable Starch Nanocomposites. Macromolecular Materials and Engineering, 2009, 294, 169-177.	3.6	225