Christophe Hue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12140604/publications.pdf

Version: 2024-02-01

623734 1058476 4,615 14 14 14 citations g-index h-index papers 14 14 14 3437 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mapping interactions between complement C3 and regulators using mutations in atypical hemolytic uremic syndrome. Blood, 2015, 125, 2359-2369.	1.4	112
2	Complement Factor B Mutations in Atypical Hemolytic Uremic Syndrome—Disease-Relevant or Benign?. Journal of the American Society of Nephrology: JASN, 2014, 25, 2053-2065.	6.1	107
3	Adaptive Expression of MicroRNA-125a in Adipose Tissue in Response to Obesity in Mice and Men. PLoS ONE, 2014, 9, e91375.	2.5	21
4	Eculizumab in an anephric patient with atypical haemolytic uraemic syndrome and advanced vascular lesions. Nephrology Dialysis Transplantation, 2013, 28, 2899-2907.	0.7	25
5	A prevalent C3 mutation in aHUS patients causes a direct C3 convertase gain of function. Blood, 2012, 119, 4182-4191.	1.4	128
6	Hyperfunctional C3 convertase leads to complement deposition on endothelial cells and contributes to atypical hemolytic uremic syndrome. Blood, 2009, 114, 2837-2845.	1.4	140
7	Restoration of Human B-cell Differentiation Into NOD-SCID Mice Engrafted With Gene-corrected CD34+ Cells Isolated From Artemis or RAG1-deficient Patients. Molecular Therapy, 2008, 16, 396-403.	8.2	39
8	Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. Journal of Clinical Investigation, 2007, 117, 2225-2232.	8.2	221
9	Long-term immune reconstitution in RAG-1-deficient mice treated by retroviral gene therapy: a balance between efficiency and toxicity. Blood, 2006, 107, 63-72.	1.4	64
10	Clonal evidence for the transduction of CD34+ cells with lymphomyeloid differentiation potential and self-renewal capacity in the SCID-X1 gene therapy trial. Blood, 2005, 105, 2699-2706.	1.4	75
11	Failure of SCID-X1 gene therapy in older patients. Blood, 2005, 105, 4255-4257.	1.4	128
12	Sustained Correction of X-Linked Severe Combined Immunodeficiency by ex Vivo Gene Therapy. New England Journal of Medicine, 2002, 346, 1185-1193.	27.0	1,075
13	Optimization of Retroviral Gene Transfer Protocol to Maintain the Lymphoid Potential of Progenitor Cells. Human Gene Therapy, 2001, 12, 291-301.	2.7	29
14	Gene Therapy of Human Severe Combined Immunodeficiency (SCID)-X1 Disease. Science, 2000, 288, 669-672.	12.6	2,451