
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1214017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protective Role of Spermidine in Colitis and Colon Carcinogenesis. Gastroenterology, 2022, 162, 813-827.e8.	1.3	40
2	Induction and Regulation of the Innate Immune Response in Helicobacter pylori Infection. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1347-1363.	4.5	19
3	Cystathionine \hat{I}^3 -lyase exacerbates Helicobacter pylori immunopathogenesis by promoting macrophage metabolic remodeling and activation. JCI Insight, 2022, 7, .	5.0	8
4	Dicarbonyl Electrophiles Mediate Inflammation-Induced Gastrointestinal Carcinogenesis. Gastroenterology, 2021, 160, 1256-1268.e9.	1.3	17
5	678 CYSTATHIONINE GAMMA LYASE (CTH) IS A MASTER REGULATOR OF MACROPHAGE IMMUNOMETABOLISM IN THE RESPONSE TO HELICOBACTER PYLORI. Gastroenterology, 2021, 160, S-133-S-134.	1.3	0
6	The role of polyamines in gastric cancer. Oncogene, 2021, 40, 4399-4412.	5.9	19
7	CCL11 exacerbates colitis and inflammation-associated colon tumorigenesis. Oncogene, 2021, 40, 6540-6546.	5.9	25
8	The role of polyamines in the regulation of macrophage polarization and function. Amino Acids, 2020, 52, 151-160.	2.7	93
9	Sa1669 A SCAVENGER OF ELECTROPHILES REDUCES COLITIS-ASSOCIATED CARCINOGENESIS. Gastroenterology, 2020, 158, S-375-S-376.	1.3	0
10	Tu1289 MACROPHAGE CYSTATHIONINE GAMMA-LYASE CONTRIBUTES TO EXPERIMENTAL COLITIS IN A STIMULUS-DEPENDENT MANNER. Gastroenterology, 2020, 158, S-1045.	1.3	0
11	Hypusination Orchestrates the Antimicrobial Response of Macrophages. Cell Reports, 2020, 33, 108510.	6.4	23
12	Spermine oxidase mediates Helicobacter pylori-induced gastric inflammation, DNA damage, and carcinogenic signaling. Oncogene, 2020, 39, 4465-4474.	5.9	46
13	17 TALIN-1 IS A NOVEL REGULATOR OF THE MACROPHAGE HOST RESPONSE TO HELICOBACTER PYLORI. Gastroenterology, 2020, 158, S-7.	1.3	0
14	1093 SPERMIDINE PROTECTS FROM COLITIS AND COLITIS-ASSOCIATED CARCINOGENESIS. Gastroenterology, 2020, 158, S-212.	1.3	0
15	Interplay between enterohaemorrhagic <i>Escherichia coli</i> and nitric oxide during the infectious process. Emerging Microbes and Infections, 2020, 9, 1065-1076.	6.5	3
16	1132 – The Macrophage Reverse Transsulfuration Pathway Mediates Helicobacter Pylori Immunopathogenesis by Regulating Polyamine Metabolism. Gastroenterology, 2019, 156, S-239-S-240.	1.3	0
17	1131 – Spermine Oxidase Deletion Confers Protection from Helicobacter Pylori-Induced Gastric Inflammation and Dna Damage. Gastroenterology, 2019, 156, S-239.	1.3	1
18	Dietary Arginine Regulates Severity of Experimental Colitis and Affects the Colonic Microbiome. Frontiers in Cellular and Infection Microbiology, 2019, 9, 66.	3.9	58

#	Article	IF	CITATIONS
19	α-Difluoromethylornithine reduces gastric carcinogenesis by causing mutations in <i>Helicobacter pylori cagY</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5077-5085.	7.1	24
20	Bacterial Pathogens Hijack the Innate Immune Response by Activation of the Reverse Transsulfuration Pathway. MBio, 2019, 10, .	4.1	20
21	Loss of solute carrier family 7 member 2 exacerbates inflammation-associated colon tumorigenesis. Oncogene, 2019, 38, 1067-1079.	5.9	41
22	Epidermal growth factor receptor inhibition downregulates <i>Helicobacter pylori</i> -induced epithelial inflammatory responses, DNA damage and gastric carcinogenesis. Gut, 2018, 67, 1247-1260.	12.1	63
23	Helicobacter: Inflammation, immunology, and vaccines. Helicobacter, 2018, 23, e12517.	3.5	34
24	Tu1283 - Nadph Oxidase 2 is a Source of Reactive Oxygen Species in Macrophages During Helicobacter Pylori Infection. Gastroenterology, 2018, 154, S-923.	1.3	0
25	Ornithine Decarboxylase in Macrophages Exacerbates Colitis and Promotes Colitis-Associated Colon Carcinogenesis by Impairing M1 Immune Responses. Cancer Research, 2018, 78, 4303-4315.	0.9	55
26	1076 - Difluoromethylornithine Reduces Helicobacter Pylori Virulence and Induction of Inflammation and Carcinogenesis. Gastroenterology, 2018, 154, S-208.	1.3	0
27	Mo1984 - A Scavenger of Bifunctional Electrophiles Reduces Helicobacter Pylori -Induced Gastric Cancer. Gastroenterology, 2018, 154, S-872.	1.3	0
28	Distinct Immunomodulatory Effects of Spermine Oxidase in Colitis Induced by Epithelial Injury or Infection. Frontiers in Immunology, 2018, 9, 1242.	4.8	35
29	Su1949 - Dietary Arginine Supplementation Modulates the Colonic Microbiome and Improves Colitis Induced by C. Rodentium or Dextran Sulfate Sodium. Gastroenterology, 2018, 154, S-643.	1.3	0
30	Tu1857 - Ornithine Decarboxylase in Macrophages Exacerbates Acute Colitis and Colitis-Associated Carcinogenesis by Impairing M1 Innate Immune Responses. Gastroenterology, 2018, 154, S-1039.	1.3	2
31	BVES is required for maintenance of colonic epithelial integrity in experimental colitis by modifying intestinal permeability. Mucosal Immunology, 2018, 11, 1363-1374.	6.0	18
32	Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E751-E760.	7.1	150
33	Human and Helicobacter pylori Interactions Determine the Outcome of Gastric Diseases. Current Topics in Microbiology and Immunology, 2017, 400, 27-52.	1.1	29
34	Hypusination is a Master Regulator of Helicobacter Pylori -Mediated Induction of the Innate Immune Response. Gastroenterology, 2017, 152, S667.	1.3	0
35	Effect of CO2 on Peroxynitrite-Mediated Bacteria Killing: Response to Tsikas et al Trends in Microbiology, 2017, 25, 602-603.	7.7	1
36	Inhibition of Epidermal Growth Factor Receptor Activation as a Strategy to Prevent helicobacter Pylori -Induced Epithelial Inflammatory Responses, DNA Damage, and Gastric Carcinogenesis. Gastroenterology, 2017, 152, S165.	1.3	0

#	Article	IF	CITATIONS
37	Induction of the Cystathionine γ-Lyase/Hydrogen Sulfide System by Helicobacter Pylori Contributes to Macrophage Activation. Gastroenterology, 2017, 152, S667.	1.3	ο
38	<i>Trypanosoma musculi</i> Infection in Mice Critically Relies on Mannose Receptor–Mediated Arginase Induction by a <i>Tb</i> KHC1 Kinesin H Chain Homolog. Journal of Immunology, 2017, 199, 1762-1771.	0.8	10
39	Polyamine- and NADPH-dependent generation of ROS during Helicobacter pylori infection: A blessing in disguise. Free Radical Biology and Medicine, 2017, 105, 16-27.	2.9	54
40	The NAG Sensor NagC Regulates LEE Gene Expression and Contributes to Gut Colonization by Escherichia coli O157:H7. Frontiers in Cellular and Infection Microbiology, 2017, 7, 134.	3.9	22
41	The L-Arginine Transporter Solute Carrier Family 7 Member 2 Mediates the Immunopathogenesis of Attaching and Effacing Bacteria. PLoS Pathogens, 2016, 12, e1005984.	4.7	24
42	The human intestinal microbiota of constipated-predominant irritable bowel syndrome patients exhibits anti-inflammatory properties. Scientific Reports, 2016, 6, 39399.	3.3	82
43	10 Deletion of the L-Arginine Transporter Solute Carrier Family 7, Member 2 (SLC7A2) Results in Increased Abundance of Firmicutes and Associated Protection From Citrobacter rodentium Colitis. Gastroenterology, 2016, 150, S3-S4.	1.3	0
44	Su1892 Epithelial Solute Carrier 7A2 Is Required for Attachment of the Colonic Pathogen Citrobacter Rodentium and Pro-Inflammatory Responses. Gastroenterology, 2016, 150, S581.	1.3	0
45	A secretome view of colonisation factors in Shiga toxin-encoding <i>Escherichia coli</i> (STEC): from enterohaemorrhagic <i>E.Âcoli</i> (EHEC) to related enteropathotypes. FEMS Microbiology Letters, 2016, 363, fnw179.	1.8	29
46	Tu1411 Spermine Oxidase Mediates the Epithelial Innate Immune Response to Attaching and Effacing Enteric Bacteria. Gastroenterology, 2016, 150, S898.	1.3	0
47	8 The Intestinal Microbiota of Irritable Bowel Syndrome Patients Attenuates DSS-Induced Colitis. Gastroenterology, 2016, 150, S3.	1.3	Ο
48	The Immune Battle against Helicobacter pylori Infection: NO Offense. Trends in Microbiology, 2016, 24, 366-376.	7.7	52
49	NsrR, GadE, and GadX Interplay in Repressing Expression of the Escherichia coli O157:H7 LEE Pathogenicity Island in Response to Nitric Oxide. PLoS Pathogens, 2014, 10, e1003874.	4.7	64
50	Heme Oxygenase-1 Dysregulates Macrophage Polarization and the Immune Response to <i>Helicobacter pylori</i> . Journal of Immunology, 2014, 193, 3013-3022.	0.8	65
51	99 Polyamines Mediate Helicobacter priori-Induced Gastric Carcinogenesis in Gerbils. Gastroenterology, 2013, 144, S-23.	1.3	Ο
52	101 Ornithine Decarboxylase Disrupts Host Immune Tolerance in Helicobacter pylori Infection by Attenuating Macrophage Production of TGF-β and Nitric Oxide. Gastroenterology, 2013, 144, S-24.	1.3	0
53	The c-di-GMP phosphodiesterase VmpA absent in Escherichia coli K12 strains affects motility and biofilm formation in the enterohemorrhagic O157:H7 serotype. Veterinary Immunology and Immunopathology, 2013, 152, 132-140.	1.2	18
54	Haem oxygenase-1 inhibits phosphorylation of the <i>Helicobacter pylori</i> oncoprotein CagA in gastric epithelial cells. Cellular Microbiology, 2013, 15, 145-156.	2.1	26

#	Article	IF	CITATIONS
55	Editorial: Orchestration of macrophage polarization by polyamines. Journal of Leukocyte Biology, 2012, 91, 677-679.	3.3	8
56	619 The Helicobacter pylori Bacterial Oncoprotein CagA is Upregulated Following Adherence to Gastric Epithelial Cells. Gastroenterology, 2012, 142, S-121.	1.3	0
57	778 Attenuation of the Macrophage Inflammatory Response to Helicobacter pylori is Mediated by p38 MAPK-Dependent Induction of Heme Oxygenase-1. Gastroenterology, 2012, 142, S-139.	1.3	0
58	Arginine and polyamines in Helicobacter pylori-induced immune dysregulation and gastric carcinogenesis. Amino Acids, 2012, 42, 627-640.	2.7	58
59	Helicobacter pylori -Induced Epidermal Growth Factor Receptor Phosphorylation Upregulates Inducible Nitric Oxide Synthase Expression and Nitric Oxide Production in Macrophages. Gastroenterology, 2011, 140, S-310.	1.3	1
60	Spermine Oxidase Mediates the Gastric Cancer Risk Associated With Helicobacter pylori CagA. Gastroenterology, 2011, 141, 1696-1708.e2.	1.3	166
61	Heterozygous Deletion of Ornithine Decarboxylase Restores Host Defense and Ameliorates Skewed TH1/TH17 Adaptive Immune Responses in Helicobacter pylori Infection. Gastroenterology, 2011, 140, S-85-S-86.	1.3	0
62	Induction of Heat Shock Factor-1 by Helicobacter pylori Blocks NF-κB Activation and the Innate Immune Response of Gastric Epithelial Cells. Gastroenterology, 2011, 140, S-86.	1.3	0
63	Heme Oxygenase-1 Inhibits CagA Phosphorylation in Helicobacter pylori -Infected Gastric Epithelial Cells. Gastroenterology, 2011, 140, S-125.	1.3	0
64	Cationic Amino Acid Transporter 2 Enhances Innate Immunity during Helicobacter pylori Infection. PLoS ONE, 2011, 6, e29046.	2.5	18
65	Immune Evasion by <i>Helicobacter pylori</i> Is Mediated by Induction of Macrophage Arginase II. Journal of Immunology, 2011, 186, 3632-3641.	0.8	80
66	Disruption of Nitric Oxide Signaling by <i>Helicobacter pylori</i> Results in Enhanced Inflammation by Inhibition of Heme Oxygenase-1. Journal of Immunology, 2011, 187, 5370-5379.	0.8	29
67	Methods to Evaluate Alterations in Polyamine Metabolism Caused by Helicobacter pylori Infection. Methods in Molecular Biology, 2011, 720, 409-425.	0.9	5
68	Helicobacter pylori Induces ERK-dependent Formation of a Phospho-c-Fos·c-Jun Activator Protein-1 Complex That Causes Apoptosis in Macrophages. Journal of Biological Chemistry, 2010, 285, 20343-20357.	3.4	69
69	Arginase II Restricts Host Defense to <i>Helicobacter pylori</i> by Attenuating Inducible Nitric Oxide Synthase Translation in Macrophages. Journal of Immunology, 2010, 184, 2572-2582.	0.8	76
70	263 Ornithine Decarboxylase Suppresses Inducible Nitric Oxide Synthase-Dependent Immune Response to Helicobacter pylori and Contributes to Persistence of Infection and Gastritis. Gastroenterology, 2010, 138, S-48-S-49.	1.3	0
71	654 Nitric Oxide Inhibits Helicobacter pylori-Induced Innate Immune Function of Gastric Epithelial Cells by a Heme Oxygenase-1-Dependent Pathway. Gastroenterology, 2010, 138, S-87.	1.3	0
72	Polyamines Impair Immunity to Helicobacter pylori by Inhibiting L-Arginine Uptake Required for Nitric Oxide Production. Gastroenterology, 2010, 139, 1686-1698.e6.	1.3	78

#	Article	IF	CITATIONS
73	Human Microbiota-Secreted Factors Inhibit Shiga Toxin Synthesis by Enterohemorrhagic <i>Escherichia coli</i> O157:H7. Infection and Immunity, 2009, 77, 783-790.	2.2	97
74	W1639 Inadequate Inflammatory Response of the Colonic Mucosa to Enterohemorrhagic Escherichia coli Infection. Gastroenterology, 2009, 136, A-707.	1.3	0
75	M1682 Intestinal Inflammation and Irritable Bowel Syndrome: An Unexpected Role of the Gut Microbiota. Gastroenterology, 2009, 136, A-409.	1.3	Ο
76	Modulation of chemokine gene expression by Shiga-toxin producing Escherichia coli belonging to various origins and serotypes. Microbes and Infection, 2008, 10, 159-165.	1.9	14
77	721 The Human Microbiota Inhibits Shiga-Toxin Synthesis By Enterohemorrhagic Escherichia coli. Gastroenterology, 2008, 134, A-103.	1.3	0
78	Differential expression of stx2 variants in Shiga toxin-producing Escherichia coli belonging to seropathotypes A and C. Microbiology (United Kingdom), 2008, 154, 176-186.	1.8	73
79	Heme Oxygenase-1 Is a Critical Regulator of Nitric Oxide Production in Enterohemorrhagic <i>Escherichia coli</i> -Infected Human Enterocytes. Journal of Immunology, 2008, 180, 5720-5726.	0.8	40
80	Shiga Toxin Produced by Enterohemorrhagic <i>Escherichia coli</i> Inhibits PI3K/NF-κB Signaling Pathway in Globotriaosylceramide-3-Negative Human Intestinal Epithelial Cells. Journal of Immunology, 2007, 178, 8168-8174.	0.8	75
81	Nitric oxide inhibits Shiga-toxin synthesis by enterohemorrhagic Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10199-10204.	7.1	69
82	Spermine Causes Loss of Innate Immune Response to Helicobacter pylori by Inhibition of Inducible Nitric-oxide Synthase Translation. Journal of Biological Chemistry, 2005, 280, 2409-2412.	3.4	114
83	Mouse Strain Susceptibility to Trypanosome Infection: An Arginase-Dependent Effect. Journal of Immunology, 2004, 172, 6298-6303.	0.8	75
84	Protective Role of Arginase in a Mouse Model of Colitis. Journal of Immunology, 2004, 173, 2109-2117.	0.8	112
85	Helicobacter pylori Heat Shock Protein 60 Mediates Interleukin-6 Production by Macrophages via a Toll-like Receptor (TLR)-2-, TLR-4-, and Myeloid Differentiation Factor 88-independent Mechanism. Journal of Biological Chemistry, 2004, 279, 245-250.	3.4	151
86	Induction of Polyamine Oxidase 1 by Helicobacter pylori Causes Macrophage Apoptosis by Hydrogen Peroxide Release and Mitochondrial Membrane Depolarization. Journal of Biological Chemistry, 2004, 279, 40161-40173.	3.4	141
87	Arginases in parasitic diseases. Trends in Parasitology, 2003, 19, 9-12.	3.3	126
88	Cutting Edge: Cyclooxygenase-2 Activation Suppresses Th1 Polarization in Response to <i>Helicobacter pylori</i> . Journal of Immunology, 2003, 171, 3913-3917.	0.8	55
89	<i>Helicobacter pylori</i> Induces Macrophage Apoptosis by Activation of Arginase II. Journal of Immunology, 2002, 168, 4692-4700.	0.8	159
90	Cutting Edge: Urease Release by <i>Helicobacter pylori</i> Stimulates Macrophage Inducible Nitric Oxide Synthase. Journal of Immunology, 2002, 168, 6002-6006.	0.8	121

#	Article	IF	CITATIONS
91	l -Arginine Availability Modulates Local Nitric Oxide Production and Parasite Killing in Experimental Trypanosomiasis. Infection and Immunity, 2000, 68, 4653-4657.	2.2	145
92	Mechanism of Extracellular Thiol Nitrosylation by N2O3 Produced by Activated Macrophages. Nitric Oxide - Biology and Chemistry, 1999, 3, 467-472.	2.7	8
93	Murine Macrophages Use Oxygen- and Nitric Oxide-Dependent Mechanisms To Synthesize <i>S</i> -Nitroso-Albumin and To Kill Extracellular Trypanosomes. Infection and Immunity, 1998, 66, 4068-4072.	2.2	63