


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12139876/publications.pdf Version: 2024-02-01



Δοτιμ

| #  | Article                                                                                                                                                                                                                  | IF          | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 1  | Fully Solution-Processed Low-Voltage Aqueous In <sub>2</sub> O <sub>3</sub> Thin-Film Transistors<br>Using an Ultrathin ZrO <sub><i>x</i></sub> Dielectric. ACS Applied Materials & Interfaces, 2014, 6,<br>17364-17369. | 4.0         | 166       |
| 2  | Lowâ€Temperature, Nontoxic Waterâ€Induced Metalâ€Oxide Thin Films and Their Application in Thinâ€Film<br>Transistors. Advanced Functional Materials, 2015, 25, 2564-2572.                                                | 7.8         | 161       |
| 3  | Solution Processed Metal Oxide Highâ€Îº Dielectrics for Emerging Transistors and Circuits. Advanced<br>Materials, 2018, 30, e1706364.                                                                                    | 11.1        | 158       |
| 4  | Perovskite and Conjugated Polymer Wrapped Semiconducting Carbon Nanotube Hybrid Films for<br>High-Performance Transistors and Phototransistors. ACS Nano, 2019, 13, 3971-3981.                                           | 7.3         | 151       |
| 5  | Waterâ€Induced Scandium Oxide Dielectric for Lowâ€Operating Voltage n―and pâ€Type Metalâ€Oxide Thinâ€<br>Transistors. Advanced Functional Materials, 2015, 25, 7180-7188.                                                | Film<br>7.8 | 147       |
| 6  | Solution Combustion Synthesis: Lowâ€Temperature Processing for pâ€Type Cu:NiO Thin Films for<br>Transparent Electronics. Advanced Materials, 2017, 29, 1701599.                                                          | 11.1        | 145       |
| 7  | Doping: A Key Enabler for Organic Transistors. Advanced Materials, 2018, 30, e1801830.                                                                                                                                   | 11.1        | 141       |
| 8  | Printable Semiconductors for Backplane TFTs of Flexible OLED Displays. Advanced Functional<br>Materials, 2020, 30, 1904588.                                                                                              | 7.8         | 136       |
| 9  | Roomâ€Temperature Solutionâ€Synthesized pâ€Type Copper(I) Iodide Semiconductors for Transparent<br>Thinâ€Film Transistors and Complementary Electronics. Advanced Materials, 2018, 30, e1802379.                         | 11.1        | 125       |
| 10 | Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k<br>dielectric. Applied Physics Letters, 2016, 108, .                                                                    | 1.5         | 122       |
| 11 | High-performance inorganic metal halide perovskite transistors. Nature Electronics, 2022, 5, 78-83.                                                                                                                      | 13.1        | 121       |
| 12 | High-performance p-channel transistors with transparent Zn doped-Cul. Nature Communications, 2020, 11, 4309.                                                                                                             | 5.8         | 94        |
| 13 | Low-temperature, nontoxic water-induced high-k zirconium oxide dielectrics for low-voltage,<br>high-performance oxide thin-film transistors. Journal of Materials Chemistry C, 2016, 4, 10715-10721.                     | 2.7         | 87        |
| 14 | Highâ€Performance and Reliable Leadâ€Free Layeredâ€Perovskite Transistors. Advanced Materials, 2020, 32,<br>e2002717.                                                                                                    | 11,1        | 86        |
| 15 | High-mobility p-type NiO <sub>x</sub> thin-film transistors processed at low temperatures with<br>Al <sub>2</sub> O <sub>3</sub> high-k dielectric. Journal of Materials Chemistry C, 2016, 4, 9438-9444.                | 2.7         | 82        |
| 16 | Solution-processed inorganic p-channel transistors: Recent advances and perspectives. Materials<br>Science and Engineering Reports, 2019, 135, 85-100.                                                                   | 14.8        | 74        |
| 17 | Engineering Copper Iodide (CuI) for Multifunctional pâ€īype Transparent Semiconductors and<br>Conductors. Advanced Science, 2021, 8, 2100546.                                                                            | 5.6         | 74        |
| 18 | Low-temperature fabrication of high performance indium oxide thin film transistors. RSC Advances, 2015, 5, 37807-37813.                                                                                                  | 1.7         | 73        |

Ao Liu

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | In situ one-step synthesis of p-type copper oxide for low-temperature, solution-processed thin-film<br>transistors. Journal of Materials Chemistry C, 2017, 5, 2524-2530.                              | 2.7 | 70        |
| 20 | Redox Chloride Elimination Reaction: Facile Solution Route for Indiumâ€Free, Lowâ€Voltage, and<br>Highâ€Performance Transistors. Advanced Electronic Materials, 2017, 3, 1600513.                      | 2.6 | 66        |
| 21 | Photochemical Activation of Electrospun In <sub>2</sub> O <sub>3</sub> Nanofibers for<br>High-Performance Electronic Devices. ACS Applied Materials & Interfaces, 2017, 9, 10805-10812.                | 4.0 | 66        |
| 22 | Eco-friendly water-induced aluminum oxide dielectrics and their application in a hybrid metal oxide/polymer TFT. RSC Advances, 2015, 5, 86606-86613.                                                   | 1.7 | 65        |
| 23 | Graphene nanodots-encaged porous gold electrode fabricated via ion beam sputtering deposition for electrochemical analysis of heavy metal ions. Sensors and Actuators B: Chemical, 2015, 206, 592-600. | 4.0 | 58        |
| 24 | Solution-processed p-type copper oxide thin-film transistors fabricated by using a one-step vacuum annealing technique. Journal of Materials Chemistry C, 2015, 3, 9509-9513.                          | 2.7 | 56        |
| 25 | Solution-processed high-k magnesium oxide dielectrics for low-voltage oxide thin-film transistors.<br>Applied Physics Letters, 2016, 109, .                                                            | 1.5 | 53        |
| 26 | Solution-processed ytterbium oxide dielectrics for low-voltage thin-film transistors and inverters.<br>Ceramics International, 2017, 43, 15194-15200.                                                  | 2.3 | 52        |
| 27 | Solution-processed ternary p-type CuCrO <sub>2</sub> semiconductor thin films and their application in transistors. Journal of Materials Chemistry C, 2018, 6, 1393-1398.                              | 2.7 | 51        |
| 28 | High-performance hysteresis-free perovskite transistors through anion engineering. Nature<br>Communications, 2022, 13, 1741.                                                                           | 5.8 | 51        |
| 29 | Solution-Processed SrO <sub>x</sub> -Gated Oxide Thin-Film Transistors and Inverters. IEEE<br>Transactions on Electron Devices, 2017, 64, 4137-4143.                                                   | 1.6 | 50        |
| 30 | A water-induced high-k yttrium oxide dielectric for fully-solution-processed oxide thin-film transistors. Current Applied Physics, 2015, 15, S75-S81.                                                  | 1,1 | 47        |
| 31 | One-step synthesis of graphene quantum dots from defective CVD graphene and their application in<br>IGZO UV thin film phototransistor. Carbon, 2016, 100, 201-207.                                     | 5.4 | 47        |
| 32 | Electrospun <i>p</i> -Type Nickel Oxide Semiconducting Nanowires for Low-Voltage Field-Effect<br>Transistors. ACS Applied Materials & Interfaces, 2018, 10, 25841-25849.                               | 4.0 | 47        |
| 33 | Eco-friendly, solution-processed In-W-O thin films and their applications in low-voltage,<br>high-performance transistors. Journal of Materials Chemistry C, 2016, 4, 4478-4484.                       | 2.7 | 45        |
| 34 | Solutionâ€Processed Alkaline Lithium Oxide Dielectrics for Applications in n―and pâ€Type Thinâ€Film<br>Transistors. Advanced Electronic Materials, 2016, 2, 1600140.                                   | 2.6 | 45        |
| 35 | Solution-processed hafnium oxide dielectric thin films for thin-film transistors applications.<br>Ceramics International, 2015, 41, 13218-13223.                                                       | 2.3 | 38        |
| 36 | Polyol Reduction: A Low-Temperature Eco-Friendly Solution Process for p-Channel Copper Oxide-Based<br>Transistors and Inverter Circuits. ACS Applied Materials & Interfaces, 2019, 11, 33157-33164.    | 4.0 | 37        |

Ao Liu

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Solution-processed yttrium oxide dielectric for high-performance IZO thin-film transistors. Ceramics<br>International, 2015, 41, S337-S343.                                          | 2.3  | 33        |
| 38 | Electrospun p-type CuO nanofibers for low-voltage field-effect transistors. Applied Physics Letters, 2017, 111, .                                                                    | 1.5  | 31        |
| 39 | High-Performance Layered Perovskite Transistors and Phototransistors by Binary Solvent<br>Engineering. Chemistry of Materials, 2021, 33, 1174-1181.                                  | 3.2  | 29        |
| 40 | The annealing effects on the properties of solution-processed alumina thin film and its application in TFTs. Ceramics International, 2015, 41, S349-S355.                            | 2.3  | 28        |
| 41 | Effect of Monovalent Metal Iodide Additives on the Optoelectric Properties of Two-Dimensional Sn-Based Perovskite Films. Chemistry of Materials, 2021, 33, 2498-2505.                | 3.2  | 28        |
| 42 | Graphene nanodots encaged 3-D gold substrate as enzyme loading platform for the fabrication of high performance biosensors. Sensors and Actuators B: Chemical, 2015, 220, 1186-1195. | 4.0  | 27        |
| 43 | Molecule Charge Transfer Doping for pâ€Channel Solutionâ€Processed Copper Oxide Transistors.<br>Advanced Functional Materials, 2020, 30, 2002625.                                    | 7.8  | 26        |
| 44 | Graphene quantum dots directly generated from graphite via magnetron sputtering and the application in thin-film transistors. Carbon, 2015, 88, 225-232.                             | 5.4  | 25        |
| 45 | High-Performance InTiZnO Thin-Film Transistors Deposited by Magnetron Sputtering. Chinese Physics<br>Letters, 2013, 30, 127301.                                                      | 1.3  | 22        |
| 46 | Transparent Inorganic Copper Bromide (CuBr) p-Channel Transistors Synthesized From Solution at<br>Room Temperature. IEEE Electron Device Letters, 2019, 40, 769-772.                 | 2.2  | 22        |
| 47 | Perovskite transistors clean up their act. Nature Electronics, 2020, 3, 662-663.                                                                                                     | 13.1 | 18        |
| 48 | Molecular Doping Enabling Mobility Boosting of 2D Sn <sup>2+</sup> â€Based Perovskites. Advanced<br>Functional Materials, 2022, 32, .                                                | 7.8  | 18        |
| 49 | Key Roles of Trace Oxygen Treatment for Highâ€Performance Znâ€Đoped CuI pâ€Channel Transistors.<br>Advanced Electronic Materials, 2021, 7, .                                         | 2.6  | 17        |
| 50 | Highly Reliable Organic Field-Effect Transistors with Molecular Additives for a High-Performance<br>Printed Gas Sensor. ACS Applied Materials & Interfaces, 2021, 13, 4278-4283.     | 4.0  | 17        |
| 51 | Modulation of vacancy-ordered double perovskite Cs2SnI6 for air-stable thin-film transistors. Cell<br>Reports Physical Science, 2022, 3, 100812.                                     | 2.8  | 17        |
| 52 | Direct transfer of graphene and application in low-voltage hybrid transistors. RSC Advances, 2017, 7, 2172-2179.                                                                     | 1.7  | 16        |
| 53 | Recent progress on metal halide perovskite field-effect transistors. Journal of Information Display,<br>2021, 22, 257-268.                                                           | 2.1  | 16        |
| 54 | Wafer-scale fabrication of a Cu/graphene double-nanocap array for surface-enhanced Raman scattering substrates. Chemical Communications, 2017, 53, 3273-3276.                        | 2.2  | 14        |

Ao Liu

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Electronic Devices Based on Oxide Thin Films Fabricated by Fiber-to-Film Process. ACS Applied Materials<br>& Interfaces, 2018, 10, 18057-18065.                                                                                     | 4.0 | 14        |
| 56 | Sodium Incorporation for Enhanced Performance of Two-Dimensional Sn-Based Perovskite<br>Transistors. ACS Applied Materials & Interfaces, 2022, 14, 9363-9367.                                                                       | 4.0 | 14        |
| 57 | Draw Spinning of Waferâ€Scale Oxide Fibers for Electronic Devices. Advanced Electronic Materials, 2018, 4, 1700644.                                                                                                                 | 2.6 | 13        |
| 58 | Impact of Humidity on the Performance and Stability of Solution-Processed Copper Oxide Transistors.<br>IEEE Electron Device Letters, 2020, , 1-1.                                                                                   | 2.2 | 6         |
| 59 | 22.1: <i>Invited Paper:</i> Solution processable pâ€type metal halide semiconductors for high performance transparent pâ€channel thinâ€film transistors. Digest of Technical Papers SID International Symposium, 2019, 50, 215-215. | 0.1 | 0         |
| 60 | 8â€4: Invited Paper: Transparent Zn Dopedâ€Cul for Highâ€Performance pâ€Channel Thin Film Transistors.<br>Digest of Technical Papers SID International Symposium, 2021, 52, 89-91.                                                  | 0.1 | 0         |
| 61 | Pâ€17: Lowâ€Temperature, Solutionâ€Processed Inorganic pâ€Channel Cuâ€based Thinâ€Film Transistors and<br>Circuits. Digest of Technical Papers SID International Symposium, 2020, 51, 1372-1374.                                    | 0.1 | 0         |