
Jiangning Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12139186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Downregulation of Erythrocyte miR-210 Induces Endothelial Dysfunction in Type 2 Diabetes. Diabetes, 2022, 71, 285-297.	0.3	15
2	Erythrocytes Induce Vascular Dysfunction in COVID-19. JACC Basic To Translational Science, 2022, 7, 193-204.	1.9	26
3	Therapeutic Potential of Sunitinib in Ameliorating Endothelial Dysfunction in Type 2 Diabetic Rats. Pharmacology, 2022, 107, 160-166.	0.9	0
4	Human Cytomegalovirus Reduces Endothelin-1 Expression in Both Endothelial and Vascular Smooth Muscle Cells. Microorganisms, 2021, 9, 1137.	1.6	4
5	Dehydro-Tocotrienol-β Counteracts Oxidative-Stress-Induced Diabetes Complications in db/db Mice. Antioxidants, 2021, 10, 1070.	2.2	8
6	Endothelin-1 increases expression and activity of arginase 2 via ETB receptors and is co-expressed with arginase 2 in human atherosclerotic plaques. Atherosclerosis, 2020, 292, 215-223.	0.4	18
7	Erythrocytes Induce Endothelial Injury in Type 2 Diabetes Through Alteration of Vascular Purinergic Signaling. Frontiers in Pharmacology, 2020, 11, 603226.	1.6	10
8	The Effect of Glycemic Control on Endothelial and Cardiac Dysfunction Induced by Red Blood Cells in Type 2 Diabetes. Frontiers in Pharmacology, 2019, 10, 861.	1.6	24
9	Red blood cell dysfunction: a new player in cardiovascular disease. Cardiovascular Research, 2019, 115, 1596-1605.	1.8	101
10	Hemoglobin β93 Cysteine Is Not Required for Export of Nitric Oxide Bioactivity From the Red Blood Cell. Circulation, 2019, 139, 2654-2663.	1.6	42
11	Identification of a soluble guanylate cyclase in RBCs: preserved activity in patients with coronary artery disease. Redox Biology, 2018, 14, 328-337.	3.9	59
12	Altered Purinergic Receptor Sensitivity in Type 2 Diabetes-Associated Endothelial Dysfunction and Up4A-Mediated Vascular Contraction. International Journal of Molecular Sciences, 2018, 19, 3942.	1.8	15
13	Erythrocytes From Patients With TypeÂ2ÂDiabetes Induce EndothelialÂDysfunction Via Arginase I. Journal of the American College of Cardiology, 2018, 72, 769-780.	1.2	123
14	Red Blood Cells in Type 2 Diabetes Impair Cardiac Post-Ischemic Recovery Through an Arginase-Dependent Modulation of Nitric Oxide Synthase and Reactive Oxygen Species. JACC Basic To Translational Science, 2018, 3, 450-463.	1.9	51
15	Erythrocytes and cardiovascular complications. Aging, 2018, 10, 3643-3644.	1.4	7
16	Low, but not high, dose caffeine is a readily available probe for adenosine actions. Molecular Aspects of Medicine, 2017, 55, 20-25.	2.7	74
17	Inhibition of Rho kinase protects from ischaemia–reperfusion injury via regulation of arginase activity and nitric oxide synthase in type 1 diabetes. Diabetes and Vascular Disease Research, 2017, 14, 236-245.	0.9	13
18	Dietary nitrate improves cardiac contractility via enhanced cellular Ca2+ signaling. Basic Research in Cardiology, 2016, 111, 34.	2.5	22

JIANGNING YANG

#	Article	IF	CITATIONS
19	The Role of Arginase and Rho Kinase in Cardioprotection from Remote Ischemic Perconditioning in Non-Diabetic and Diabetic Rat In Vivo. PLoS ONE, 2014, 9, e104731.	1.1	23
20	Arginase as a target for treatment of myocardial ischemia-reperfusion injury. European Journal of Pharmacology, 2013, 720, 121-123.	1.7	20
21	Arginase inhibition reduces infarct size via nitric oxide, protein kinase C epsilon and mitochondrial ATP-dependent K+ channels. European Journal of Pharmacology, 2013, 712, 16-21.	1.7	25
22	Arginase regulates red blood cell nitric oxide synthase and export of cardioprotective nitric oxide bioactivity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15049-15054.	3.3	125