List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12138216/publications.pdf Version: 2024-02-01

209 papers	20,016 citations	7568 77 h-index	11939 134 g-index
213	213	213	13199
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Axonal pathology in traumatic brain injury. Experimental Neurology, 2013, 246, 35-43.	4.1	949
2	Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain, 2013, 136, 28-42.	7.6	819
3	Chronic neuropathologies of single and repetitive TBI: substrates of dementia?. Nature Reviews Neurology, 2013, 9, 211-221.	10.1	590
4	Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nature Reviews Neurology, 2013, 9, 201-210.	10.1	509
5	Widespread Tau and Amyloidâ€Beta Pathology Many Years After a Single Traumatic Brain Injury in Humans. Brain Pathology, 2012, 22, 142-149.	4.1	507
6	Traumatic brain injury and amyloid-β pathology: a link to Alzheimer's disease?. Nature Reviews Neuroscience, 2010, 11, 361-370.	10.2	469
7	Diffuse Axonal Injury in Head Trauma. Journal of Head Trauma Rehabilitation, 2003, 18, 307-316.	1.7	438
8	A Model of Parasagittal Controlled Cortical Impact in the Mouse: Cognitive and Histopathologic Effects. Journal of Neurotrauma, 1995, 12, 169-178.	3.4	401
9	Progressive Atrophy and Neuron Death for One Year Following Brain Trauma in the Rat. Journal of Neurotrauma, 1997, 14, 715-727.	3.4	398
10	Traumatic Axonal Injury Induces Calcium Influx Modulated by Tetrodotoxin-Sensitive Sodium Channels. Journal of Neuroscience, 2001, 21, 1923-1930.	3.6	381
11	Evaluation of Memory Dysfunction Following Experimental Brain Injury Using the Morris Water Maze. Journal of Neurotrauma, 1991, 8, 259-269.	3.4	332
12	Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB Journal, 2010, 24, 1401-1410.	0.5	325
13	Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Experimental Neurology, 2007, 208, 185-192.	4.1	314
14	Biomechanics of Concussion. Clinics in Sports Medicine, 2011, 30, 19-31.	1.8	283
15	Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Experimental Neurology, 2012, 233, 364-372.	4.1	275
16	High Tolerance and Delayed Elastic Response of Cultured Axons to Dynamic Stretch Injury. Journal of Neuroscience, 1999, 19, 4263-4269.	3.6	261
17	Axonal Damage in Traumatic Brain Injury. Neuroscientist, 2000, 6, 483-495.	3.5	260
18	Extreme Stretch Growth of Integrated Axons. Journal of Neuroscience, 2004, 24, 7978-7983.	3.6	249

#	Article	IF	CITATIONS
19	Long-Term Accumulation of Amyloid-β, β-Secretase, Presenilin-1, and Caspase-3 in Damaged Axons Following Brain Trauma. American Journal of Pathology, 2004, 165, 357-371.	3.8	245
20	A Lack of Amyloid β Plaques Despite Persistent Accumulation of Amyloid β in Axons of Longâ€Term Survivors of Traumatic Brain Injury. Brain Pathology, 2009, 19, 214-223.	4.1	227
21	Experimental brain injury induces differential expression of tumor necrosis factor-α mRNA in the CNS. Molecular Brain Research, 1996, 36, 287-291.	2.3	226
22	Biomechanical Analysis of Experimental Diffuse Axonal Injury. Journal of Neurotrauma, 1995, 12, 689-694.	3.4	223
23	Mild Traumatic Brain Injury and Diffuse Axonal Injury in Swine. Journal of Neurotrauma, 2011, 28, 1747-1755.	3.4	219
24	Experimental brain injury induces expression of interleukin-1Î ² mRNA in the rat brain. Molecular Brain Research, 1995, 30, 125-130.	2.3	209
25	Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. Journal of Neurosurgery, 1998, 88, 795-801.	1.6	203
26	Traumatic Axonal Injury Induces Proteolytic Cleavage of the Voltage-Gated Sodium Channels Modulated by Tetrodotoxin and Protease Inhibitors. Journal of Neuroscience, 2004, 24, 4605-4613.	3.6	201
27	Coagulopathy in Traumatic Brain Injury. Neurocritical Care, 2004, 1, 479-488.	2.4	194
28	Amyloid β accumulation in axons after traumatic brain injury in humans. Journal of Neurosurgery, 2003, 98, 1072-1077.	1.6	184
29	Characterization of Diffuse Axonal Pathology and Selective Hippocampal Damage following Inertial Brain Trauma in the Pig. Journal of Neuropathology and Experimental Neurology, 1997, 56, 822-834.	1.7	182
30	Immediate coma following inertial brain injury dependent on axonal damage in the brainstem. Journal of Neurosurgery, 2000, 93, 315-322.	1.6	177
31	Therapy Development for Diffuse Axonal Injury. Journal of Neurotrauma, 2013, 30, 307-323.	3.4	173
32	Insulin-like Growth Factor-1 (IGF-1) Improves both Neurological Motor and Cognitive Outcome Following Experimental Brain Injury. Experimental Neurology, 1997, 147, 418-427.	4.1	166
33	Prolonged Activation of NF-κB Following Traumatic Brain Injury in Rats. Journal of Neurotrauma, 1999, 16, 1023-1034.	3.4	162
34	Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 21-45.	22.4	158
35	Thromboembolism and Delayed Cerebral Ischemia after Subarachnoid Hemorrhage: An Autopsy Study. Neurosurgery, 2006, 59, 781-788.	1.1	157
36	Brain Trauma Induces Massive Hippocampal Neuron Death Linked to a Surge in β-Amyloid Levels in Mice Overexpressing Mutant Amyloid Precursor Protein. American Journal of Pathology, 1998, 153, 1005-1010.	3.8	148

#	Article	IF	CITATIONS
37	Intravascular coagulation: a major secondary insult in nonfatal traumatic brain injury. Journal of Neurosurgery, 2002, 97, 1373-1377.	1.6	148
38	Traumatic Axonal Injury Results in Biphasic Calpain Activation and Retrograde Transport Impairment in Mice. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 34-42.	4.3	148
39	Viscoelasticity of Tau Proteins Leads to Strain Rate-Dependent Breaking ofÂMicrotubules during Axonal Stretch Injury: Predictions from a Mathematical Model. Biophysical Journal, 2014, 106, 1123-1133.	0.5	148
40	Common data elements in radiologic imaging of traumatic brain injury. Journal of Magnetic Resonance Imaging, 2010, 32, 516-543.	3.4	139
41	Stretch growth of integrated axon tracts: Extremes and exploitations. Progress in Neurobiology, 2009, 89, 231-239.	5.7	134
42	Animal models of traumatic brain injury. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2015, 127, 115-128.	1.8	127
43	Blood Biomarkers for Traumatic Brain Injury: A Quantitative Assessment of Diagnostic and Prognostic Accuracy. Frontiers in Neurology, 2019, 10, 446.	2.4	127
44	Protein Accumulation in Traumatic Brain Injury. NeuroMolecular Medicine, 2003, 4, 59-72.	3.4	126
45	Blood-Brain Barrier Disruption Is an Early Event That May Persist for Many Years After Traumatic Brain Injury in Humans. Journal of Neuropathology and Experimental Neurology, 2015, 74, 1147-1157.	1.7	126
46	Magnesium and ketamine attenuate cognitive dysfunction following experimental brain injury. Neuroscience Letters, 1993, 157, 211-214.	2.1	125
47	Association between Intravascular Microthrombosis and Cerebral Ischemia in Traumatic Brain Injury. Neurosurgery, 2004, 54, 687-691.	1.1	123
48	Persistent memory dysfunction is associated with bilateral hippocampal damage following experimental brain injury. Neuroscience Letters, 1994, 168, 151-154.	2.1	119
49	<i>In-Vitro</i> Approaches for Studying Blast-Induced Traumatic Brain Injury. Journal of Neurotrauma, 2009, 26, 861-876.	3.4	119
50	Developing a tissue-engineered neural-electrical relay using encapsulated neuronal constructs on conducting polymer fibers. Journal of Neural Engineering, 2008, 5, 374-384.	3.5	118
51	Mechanical disruption of the blood–brain barrier following experimental concussion. Acta Neuropathologica, 2018, 135, 711-726.	7.7	116
52	The Sodium Channel Blocker and Glutamate Release Inhibitor BW1003C87 and Magnesium Attenuate Regional Cerebral Edema Following Experimental Brain Injury in the Rat. Journal of Neurochemistry, 1995, 64, 802-809.	3.9	111
53	Chronic traumatic encephalopathy — confusion and controversies. Nature Reviews Neurology, 2019, 15, 179-183.	10.1	111
54	Sodium channelopathy induced by mild axonal trauma worsens outcome after a repeat injury. Journal of Neuroscience Research, 2009, 87, 3620-3625.	2.9	110

#	Article	IF	CITATIONS
55	A New Strategy to Produce Sustained Growth of Central Nervous System Axons: Continuous Mechanical Tension. Tissue Engineering, 2001, 7, 131-139.	4.6	109
56	Thalamic Nuclei After Human Blunt Head Injury. Journal of Neuropathology and Experimental Neurology, 2006, 65, 478-488.	1.7	109
57	Chronic traumatic encephalopathy is a common co-morbidity, but less frequent primary dementia in former soccer and rugby players. Acta Neuropathologica, 2019, 138, 389-399.	7.7	108
58	Newfound sex differences in axonal structure underlie differential outcomes from in vitro traumatic axonal injury. Experimental Neurology, 2018, 300, 121-134.	4.1	104
59	Distribution of Forebrain Diffuse Axonal Injury Following Inertial Closed Head Injury in Miniature Swine. Experimental Neurology, 1994, 126, 291-298.	4.1	103
60	Effect of Acute Calcium Influx after Mechanical Stretch Injury In Vitro on the Viability of Hippocampal Neurons. Journal of Neurotrauma, 2004, 21, 61-72.	3.4	102
61	SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury. Acta Neuropathologica, 2016, 131, 115-135.	7.7	102
62	Neurogenesis and Glial Proliferation Persist for at Least One Year in the Subventricular Zone Following Brain Trauma in Rats. Journal of Neurotrauma, 2003, 20, 623-631.	3.4	101
63	Evolution of Neurofilament Subtype Accumulation in Axons Following Diffuse Brain Injury in the Pig. Journal of Neuropathology and Experimental Neurology, 1999, 58, 588-596.	1.7	99
64	Serum SNTF Increases in Concussed Professional Ice Hockey Players and Relates to the Severity of Postconcussion Symptoms. Journal of Neurotrauma, 2015, 32, 1294-1300.	3.4	99
65	Temporal response and effects of excitatory amino acid antagonism on microtubule-associated protein 2 immunoreactivity following experimental brain injury in rats. Brain Research, 1995, 678, 151-160.	2.2	98
66	Long-Term Accumulation of Amyloid-β in Axons Following Brain Trauma Without Persistent Upregulation of Amyloid Precursor Protein Genes. Journal of Neuropathology and Experimental Neurology, 2002, 61, 1056-1068.	1.7	97
67	Blood-Brain Barrier Disruption Is an Early Event That May Persist for Many Years After Traumatic Brain Injury in Humans. Journal of Neuropathology and Experimental Neurology, 2015, 74, 1147-1157.	1.7	95
68	A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration. Methods in Molecular Biology, 2016, 1462, 289-324.	0.9	89
69	Traumatic brain injury in young, amyloid-? peptide overexpressing transgenic mice induces marked ipsilateral hippocampal atrophy and diminished A? deposition during aging. Journal of Comparative Neurology, 1999, 411, 390-398.	1.6	87
70	Pre-Clinical Traumatic Brain Injury Common Data Elements: Toward a Common Language Across Laboratories. Journal of Neurotrauma, 2015, 32, 1725-1735.	3.4	86
71	Neural Substrate Expansion for the Restoration of Brain Function. Frontiers in Systems Neuroscience, 2016, 10, 1.	2.5	85
72	Evidence That the Blood Biomarker SNTF Predicts Brain Imaging Changes and Persistent Cognitive Dysfunction in Mild TBI Patients. Frontiers in Neurology, 2013, 4, 190.	2.4	84

#	Article	IF	CITATIONS
73	Twofold overexpression of human ?-amyloid precursor proteins in transgenic mice does not affect the neuromotor, cognitive, or neurodegenerative sequelae following experimental brain injury. , 1998, 392, 428-438.		83
74	Traumatic Brain Injury as a Trigger of Neurodegeneration. Advances in Neurobiology, 2017, 15, 383-400.	1.8	83
75	Neurological Manifestations Among US Government Personnel Reporting Directional Audible and Sensory Phenomena in Havana, Cuba. JAMA - Journal of the American Medical Association, 2018, 319, 1125.	7.4	83
76	Brain Trauma in Aged Transgenic Mice Induces Regression of Established AÎ ² Deposits. Experimental Neurology, 2000, 163, 244-252.	4.1	81
77	Chronic ibuprofen administration worsens cognitive outcome following traumatic brain injury in rats. Experimental Neurology, 2006, 201, 301-307.	4.1	81
78	Magnetic Resonance Spectroscopy of Diffuse Brain Trauma in the Pig. Journal of Neurotrauma, 1998, 15, 665-674.	3.4	80
79	Calpain Mediates Proteolysis of the Voltage-Gated Sodium Channel α-Subunit. Journal of Neuroscience, 2009, 29, 10350-10356.	3.6	80
80	Magnetization Transfer Imaging of Diffuse Axonal Injury Following Experimental Brain Injury in the Pig: Characterization by Magnetization Transfer Ratio with Histopathologic Correlation. Journal of Computer Assisted Tomography, 1996, 20, 540-546.	0.9	80
81	Evaluation of a novel calcium channel blocker, (S)-emopamil, on regional cerebral edema and neurobehavioral function after experimental brain injury. Journal of Neurosurgery, 1992, 77, 607-615.	1.6	78
82	Kynurenate is neuroprotective following experimental brain injury in the rat. Brain Research, 1994, 655, 91-96.	2.2	78
83	Detection of Acute Pathologic Changes following Experimental Traumatic Brain Injury Using Diffusion-Weighted Magnetic Resonance Imaging. Journal of Neurotrauma, 1996, 13, 515-521.	3.4	78
84	Development of transplantable nervous tissue constructs comprised of stretch-grown axons. Journal of Neuroscience Methods, 2006, 153, 95-103.	2.5	77
85	Sequential stages and distribution patterns of aging-related tau astrogliopathy (ARTAG) in the human brain. Acta Neuropathologica Communications, 2018, 6, 50.	5.2	77
86	Riluzole, a Novel Neuroprotective Agent, Attenuates Both Neurologic Motor and Cognitive Dysfunction Following Experimental Brain Injury in the Rat. Journal of Neurotrauma, 1996, 13, 767-780.	3.4	76
87	Acute and chronically increased immunoreactivity to phosphorylation-independent but not pathological TDP-43 after a single traumatic brain injury in humans. Acta Neuropathologica, 2011, 122, 715-726.	7.7	76
88	Riluzole attenuates cortical lesion size, but not hippocampal neuronal loss, following traumatic brain injury in the rat. , 1998, 52, 342-349.		75
89	Induction of a transmissible tau pathology by traumatic brain injury. Brain, 2018, 141, 2685-2699.	7.6	74
90	Imipramine Treatment Improves Cognitive Outcome Associated with Enhanced Hippocampal Neurogenesis after Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2011, 28, 995-1007.	3.4	72

#	Article	IF	CITATIONS
91	Cellular Responses to Experimental Brain Injury. Brain Pathology, 1995, 5, 437-442.	4.1	69
92	Delayed Administration of Basic Fibroblast Growth Factor (bFGF) Attenuates Cognitive Dysfunction Following Parasagittal Fluid Percussion Brain Injury in the Rat. Journal of Neurotrauma, 1997, 14, 191-200.	3.4	69
93	High-Field Proton Magnetic Resonance Spectroscopy of a Swine Model for Axonal Injury. Journal of Neurochemistry, 2002, 70, 2038-2044.	3.9	69
94	Neutralizing the neurotoxic effects of exogenous and endogenous tPA. Nature Neuroscience, 2006, 9, 1150-1155.	14.8	69
95	Patterns of Early Emotional and Neuropsychological Sequelae after Mild Traumatic Brain Injury. Journal of Neurotrauma, 2014, 31, 914-925.	3.4	68
96	Pre-Clinical Testing of Therapies for Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 2737-2754.	3.4	68
97	Traumatic Axonal Injury Results in Biphasic Calpain Activation and Retrograde Transport Impairment in Mice. Journal of Cerebral Blood Flow and Metabolism, 2003, , 34-42.	4.3	67
98	Microtissue Engineered Constructs with Living Axons for Targeted Nervous System Reconstruction. Tissue Engineering - Part A, 2012, 18, 2280-2289.	3.1	66
99	Mechanical Effects of Dynamic Binding between Tau Proteins on Microtubules during Axonal Injury. Biophysical Journal, 2015, 109, 2328-2337.	0.5	66
100	Finite Element Modeling Approaches for Predicting Injury in an Experimental Model of Severe Diffuse Axonal Injury. , 1998, , .		65
101	Microthrombosis after experimental subarachnoid hemorrhage: Time course and effect of red blood cell-bound thrombin-activated pro-urokinase and clazosentan. Experimental Neurology, 2012, 233, 357-363.	4.1	65
102	Stretch-grown axons retain the ability to transmit active electrical signals. FEBS Letters, 2006, 580, 3525-3531.	2.8	63
103	New Magnetic Resonance Imaging Techniques for the Evaluation of Traumatic Brain Injury. Journal of Neurotrauma, 1995, 12, 573-577.	3.4	62
104	Long-Term Survival and Outgrowth of Mechanically Engineered Nervous Tissue Constructs Implanted Into Spinal Cord Lesions. Tissue Engineering, 2006, 12, 101-110.	4.6	62
105	Effects of the Novel NMDA Antagonists CP-98,113, CP-101,581 and CP-101,606 on Cognitive Function and Regional Cerebral Edema Following Experimental Brain Injury in the Rat. Journal of Neurotrauma, 1997, 14, 211-222.	3.4	61
106	Differential responses in three thalamic nuclei in moderately disabled, severely disabled and vegetative patients after blunt head injury. Brain, 2004, 127, 2470-2478.	7.6	61
107	A Neprilysin Polymorphism and Amyloid-β Plaques after Traumatic Brain Injury. Journal of Neurotrauma, 2009, 26, 1197-1202.	3.4	60
108	Long-Term Survival and Integration of Transplanted Engineered Nervous Tissue Constructs Promotes Peripheral Nerve Regeneration. Tissue Engineering - Part A, 2009, 15, 1677-1685.	3.1	59

#	Article	IF	CITATIONS
109	Experimental Investigation of Cerebral Contusion: Histopathological and Immunohistochemical Evaluation of Dynamic Cortical Deformation. Journal of Neuropathology and Experimental Neurology, 1999, 58, 153-164.	1.7	58
110	Biomaterials in the repair of sports injuries. Nature Materials, 2012, 11, 652-654.	27.5	58
111	Rebuilding Brain Circuitry with Living Micro-Tissue Engineered Neural Networks. Tissue Engineering - Part A, 2015, 21, 2744-2756.	3.1	58
112	A Device to Study the Initiation and Propagation of Calcium Transients in Cultured Neurons After Mechanical Stretch. Annals of Biomedical Engineering, 2004, 32, 1546-1559.	2.5	55
113	Diffuse axonal pathology detected with magnetization transfer imaging following brain injury in the pig. Magnetic Resonance in Medicine, 1999, 41, 727-733.	3.0	54
114	Traumatic brain injury induces biphasic upregulation of ApoE and ApoJ protein in rats. Journal of Neuroscience Research, 2005, 82, 103-114.	2.9	51
115	Tau immunophenotypes in chronic traumatic encephalopathy recapitulate those of ageing and Alzheimer's disease. Brain, 2020, 143, 1572-1587.	7.6	50
116	Metabolic Quantification of Lesion Volume following Experimental Traumatic Brain Injury in the Rat. Journal of Neurotrauma, 1997, 14, 15-22.	3.4	49
117	Effects of the NMDA antagonist CP-98,113 on regional cerebral edema and cardiovascular, cognitive, and neurobehavioral function following experimental brain injury in the rat. Brain Research, 1998, 792, 291-298.	2.2	49
118	Primum non nocere: a call for balance when reporting on CTE. Lancet Neurology, The, 2019, 18, 231-233.	10.2	48
119	Mechanisms of calpain mediated proteolysis of voltage gated sodium channel αâ€subunits following <i>in vitro</i> dynamic stretch injury. Journal of Neurochemistry, 2012, 121, 793-805.	3.9	45
120	Dendritic alterations after dynamic axonal stretch injury in vitro. Experimental Neurology, 2010, 224, 415-423.	4.1	44
121	Elevated glutamate and lactate predict brain death after severe head trauma. Annals of Clinical and Translational Neurology, 2017, 4, 392-402.	3.7	43
122	Roller Coasters, G Forces, and Brain Trauma: On the Wrong Track?. Journal of Neurotrauma, 2002, 19, 1117-1120.	3.4	42
123	Neuroprotective effects of progesterone in traumatic brain injury: blunted inÂvivo neutrophil activation at the blood-brain barrier. American Journal of Surgery, 2013, 206, 840-846.	1.8	42
124	Concussion Induces Hippocampal Circuitry Disruption in Swine. Journal of Neurotrauma, 2017, 34, 2303-2314.	3.4	41
125	Signaling, delivery and age as emerging issues in the benefit/risk ratio outcome of tPA For treatment of CNS ischemic disorders. Journal of Neurochemistry, 2010, 113, 303-312.	3.9	39
126	Testosterone Administration after Traumatic Brain Injury Reduces Mitochondrial Dysfunction and Neurodegeneration. Journal of Neurotrauma, 2019, 36, 2246-2259.	3.4	39

#	Article	IF	CITATIONS
127	Enoxaparin ameliorates post–traumatic brain injury edema and neurologic recovery, reducing cerebral leukocyte endothelial interactions and vessel permeability in vivo. Journal of Trauma and Acute Care Surgery, 2015, 79, 78-84.	2.1	38
128	Multisite Assessment of Aging-Related Tau Astrogliopathy (ARTAG). Journal of Neuropathology and Experimental Neurology, 2017, 76, 605-619.	1.7	38
129	Erythrocyte-Bound Tissue Plasminogen Activator is Neuroprotective in Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2009, 26, 1585-1592.	3.4	37
130	Red Blood Cells-Coupled tPA Prevents Impairment of Cerebral Vasodilatory Responses and Tissue Injury in Pediatric Cerebral Hypoxia/Ischemia through Inhibition of ERK MAPK Activation. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1463-1474.	4.3	36
131	High-Resolution ¹ H NMR Spectroscopy Following Experimental Brain Trauma. Journal of Neurotrauma, 1997, 14, 441-449.	3.4	35
132	The nootropic compound BMY-21502 improves spatial learning ability in brain injured rats. Brain Research, 1993, 624, 199-208.	2.2	34
133	Immediate in vivo response of the cortex and the blood–brain barrier following dynamic cortical deformation in the rat. Neuroscience Letters, 1999, 259, 5-8.	2.1	32
134	Harvested human neurons engineered as live nervous tissue constructs: implications for transplantation. Journal of Neurosurgery, 2008, 108, 343-347.	1.6	32
135	NEURAL ENGINEERING TO PRODUCE IN VITRONERVE CONSTRUCTS AND NEUROINTERFACE. Neurosurgery, 2007, 60, 137-142.	1.1	31
136	Similar effects of hypertonic saline and mannitol on the inflammation of the blood-brain barrier microcirculation after brain injury in a mouse model. Journal of Trauma and Acute Care Surgery, 2012, 73, 351-357.	2.1	31
137	Inhibition of Nogo-66 Receptor 1 Enhances Recovery of Cognitive Function after Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2013, 30, 247-258.	3.4	31
138	(S)-Emopamil Attenuates Acute Reduction in Regional Cerebral Blood Flow Following Experimental Brain Injury. Journal of Neurotrauma, 1994, 11, 83-95.	3.4	30
139	Acute treatment with MgSO4 attenuates long-term hippocampal tissue loss after brain trauma in the rat. Journal of Neuroscience Research, 2004, 77, 878-883.	2.9	28
140	Neuroimaging Findings in US Government Personnel With Possible Exposure to Directional Phenomena in Havana, Cuba. JAMA - Journal of the American Medical Association, 2019, 322, 336.	7.4	27
141	Neural Tissue Engineering for Neuroregeneration and Biohybridized Interface Microsystems In vivo (Part 2). Critical Reviews in Biomedical Engineering, 2011, 39, 241-259.	0.9	26
142	â€~Concussion' is not a true diagnosis. Nature Reviews Neurology, 2020, 16, 457-458.	10.1	25
143	Remacemide hydrochloride reduces cortical lesion volume following brain trauma in the rat. Neuroscience Letters, 1997, 231, 135-138.	2.1	24
144	Hemostatic and neuroprotective effects of human recombinant activated factor VII therapy after traumatic brain injury in pigs. Experimental Neurology, 2008, 210, 645-655.	4.1	24

#	Article	IF	CITATIONS
145	Does enoxaparin interfere with HMGB1 signaling after TBI? A potential mechanism for reduced cerebral edema and neurologic recovery. Journal of Trauma and Acute Care Surgery, 2016, 80, 381-389.	2.1	24
146	Preclinical modelling of militarily relevant traumatic brain injuries: Challenges and recommendations for future directions. Brain Injury, 2017, 31, 1168-1176.	1.2	24
147	Unfractionated heparin after TBI reduces in vivo cerebrovascular inflammation, brain edema and accelerates cognitive recovery. Journal of Trauma and Acute Care Surgery, 2016, 81, 1088-1094.	2.1	23
148	Tissue Engineered Axon Tracts Serve as Living Scaffolds to Accelerate Axonal Regeneration and Functional Recovery Following Peripheral Nerve Injury in Rats. Frontiers in Bioengineering and Biotechnology, 2020, 8, 492.	4.1	22
149	Pre-Clinical Common Data Elements for Traumatic Brain Injury Research: Progress and Use Cases. Journal of Neurotrauma, 2021, 38, 1399-1410.	3.4	22
150	NPS 1506 Attenuates Cognitive Dysfunction and Hippocampal Neuron Death Following Brain Trauma in the Rat. Experimental Neurology, 2000, 166, 442-449.	4.1	21
151	Cost-Effectiveness of Biomarker Screening for Traumatic Brain Injury. Journal of Neurotrauma, 2019, 36, 2083-2091.	3.4	21
152	A Porcine Model of Peripheral Nerve Injury Enabling Ultra-Long Regenerative Distances: Surgical Approach, Recovery Kinetics, and Clinical Relevance. Neurosurgery, 2020, 87, 833-846.	1.1	21
153	Blast-Induced Color Change in Photonic Crystals Corresponds with Brain Pathology. Journal of Neurotrauma, 2011, 28, 2307-2318.	3.4	20
154	Roadmap for Advancing Pre-Clinical Science in Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 3204-3221.	3.4	20
155	Color changing photonic crystals detect blast exposure. NeuroImage, 2011, 54, S37-S44.	4.2	19
156	Early heparin administration after traumatic brain injury. Journal of Trauma and Acute Care Surgery, 2017, 83, 406-412.	2.1	19
157	Astroglial tau pathology alone preferentially concentrates at sulcal depths in chronic traumatic encephalopathy neuropathologic change. Brain Communications, 2020, 2, fcaa210.	3.3	19
158	Allotransplanted Neurons Used to Repair Peripheral Nerve Injury Do Not Elicit Overt Immunogenicity. PLoS ONE, 2012, 7, e31675.	2.5	19
159	Head Motions While Riding Roller Coasters. American Journal of Forensic Medicine and Pathology, 2009, 30, 339-345.	0.8	18
160	Cellular biomechanics of central nervous system injury. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2015, 127, 105-114.	1.8	18
161	tPA-S481A Prevents Neurotoxicity of Endogenous tPA in Traumatic Brain Injury. Journal of Neurotrauma, 2012, 29, 1794-1802.	3.4	17
162	Harnessing Plasticity for the Treatment of Neurosurgical Disorders: An Overview. World Neurosurgery, 2014, 82, 648-659.	1.3	17

#	Article	IF	CITATIONS
163	Modeling links softening of myelin and spectrin scaffolds of axons after a concussion to increased vulnerability to repeated injuries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
164	Electrophysiological Signature Reveals Laminar Structure of the Porcine Hippocampus. ENeuro, 2018, 5, ENEURO.0102-18.2018.	1.9	17
165	Updating Memory after Mild Traumatic Brain Injury and Orthopedic Injuries. Journal of Neurotrauma, 2013, 30, 618-624.	3.4	16
166	InÂvivo leukocyte-mediated brain microcirculatory inflammation: a comparison ofÂosmotherapies and progesterone in severe traumatic brain injury. American Journal of Surgery, 2014, 208, 961-968.	1.8	15
167	A model for stretch growth of neurons. Journal of Biomechanics, 2016, 49, 3934-3942.	2.1	15
168	Modeling traumatic brain injury with human brain organoids. Current Opinion in Biomedical Engineering, 2020, 14, 52-58.	3.4	15
169	A novel neuroprosthetic interface with the peripheral nervous system using artificially engineered axonal tracts. Neurological Research, 2008, 30, 1063-1067.	1.3	14
170	A concomitant bone fracture delays cognitive recovery from traumatic brain injury. Journal of Trauma and Acute Care Surgery, 2018, 85, 275-284.	2.1	14
171	Bionic Connections. Scientific American, 2012, 308, 52-57.	1.0	13
172	Multichannel activity propagation across an engineered axon network. Journal of Neural Engineering, 2017, 14, 026016.	3.5	13
173	Early low-anticoagulant desulfated heparin after traumatic brain injury: Reduced brain edema and leukocyte mobilization is associated with improved watermaze learning ability weeks after injury. Journal of Trauma and Acute Care Surgery, 2018, 84, 727-735.	2.1	13
174	Serum SNTF, a Surrogate Marker of Axonal Injury, Is Prognostic for Lasting Brain Dysfunction in Mild TBI Treated in the Emergency Department. Frontiers in Neurology, 2020, 11, 249.	2.4	13
175	COllaborative Neuropathology NEtwork Characterizing ouTcomes of TBI (CONNECT-TBI). Acta Neuropathologica Communications, 2021, 9, 32.	5.2	13
176	Survival Rates and Biomarkers in a Large Animal Model of Traumatic Brain Injury Combined With Two Different Levels of Blood Loss. Shock, 2021, 55, 554-562.	2.1	13
177	Detection of astrocytic tau pathology facilitates recognition of chronic traumatic encephalopathy neuropathologic change. Acta Neuropathologica Communications, 2022, 10, 50.	5.2	13
178	Blast-Induced Color Change in Photonic Crystals Corresponds with Brain Pathology. Journal of Neurotrauma, 2011, 28, 2307-2318.	3.4	11
179	Apo E genotype not associated with intravascular coagulation in traumatic brain injury. Neuroscience Letters, 2005, 387, 28-31.	2.1	10
180	Functional Cortical Axon Tracts Generated from Human Stem Cell-Derived Neurons. Tissue Engineering - Part A, 2019, 25, 736-745.	3.1	10

#	Article	IF	CITATIONS
181	Neuropathological Characteristics of Brachial Plexus Avulsion Injury With and Without Concomitant Spinal Cord Injury. Journal of Neuropathology and Experimental Neurology, 2016, 75, 69-85.	1.7	9
182	Mechanisms of Local Stress Amplification in Axons near the Gray-White Matter Interface. Biophysical Journal, 2020, 119, 1290-1300.	0.5	9
183	Antithrombin III ameliorates post–traumatic brain injury cerebral leukocyte mobilization enhancing recovery of blood brain barrier integrity. Journal of Trauma and Acute Care Surgery, 2021, 90, 274-280.	2.1	9
184	An inflammatory pulmonary insult post-traumatic brain injury worsens subsequent spatial learning and neurological outcomes. Journal of Trauma and Acute Care Surgery, 2019, 87, 552-558.	2.1	8
185	Biomanufacturing of Axon-Based Tissue Engineered Nerve Grafts Using Porcine GalSafe Neurons. Tissue Engineering - Part A, 2021, 27, 1305-1320.	3.1	8
186	Beta blockade in TBI: Dose-dependent reductions in BBB leukocyte mobilization and permeability in vivo. Journal of Trauma and Acute Care Surgery, 2022, 92, 781-791.	2.1	8
187	Spatiotemporal Distribution of Spectrin Breakdown Products Induced by Anoxia in Adult Rat Optic Nervein Vitro. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 777-786.	4.3	7
188	Cerebral Edema and Neurological Recovery after Traumatic Brain Injury Are Worsened if Accompanied by a Concomitant Long Bone Fracture. Journal of Neurotrauma, 2019, 36, 609-618.	3.4	7
189	Dorsal root ganglion axons facilitate and guide cortical neural outgrowth: In vitro modeling of spinal cord injury axonal regeneration. Restorative Neurology and Neuroscience, 2020, 38, 1-9.	0.7	7
190	Newfound effect of N-acetylaspartate in preventing and reversing aggregation of amyloid-beta in vitro. Neurobiology of Disease, 2018, 117, 161-169.	4.4	6
191	Implantation of Engineered Axon Tracts to Bridge Spinal Cord Injury Beyond the Glial Scar in Rats. Tissue Engineering - Part A, 2021, 27, 1264-1274.	3.1	6
192	Reproducibility and Characterization of Head Kinematics During a Large Animal Acceleration Model of Traumatic Brain Injury. Frontiers in Neurology, 2021, 12, 658461.	2.4	6
193	Alzheimer's Disease-Related Dementias Summit 2019: National Research Priorities for the Investigation of Traumatic Brain Injury as a Risk Factor for Alzheimer's Disease and Related Dementias. Journal of Neurotrauma, 2021, 38, 3186-3194.	3.4	6
194	Neuromechanics and Pathophysiology of Diffuse Axonal Injury in Concussion. Bridge, 2016, 46, 79-84.	1.0	6
195	CENTRAL NERVOUS SYSTEM RESUSCITATION. Emergency Medicine Clinics of North America, 1997, 15, 527-550.	1.2	5
196	Traumatic brain injury: a platform for studies in AÎ ² processing. Brain Pathology, 2018, 28, 463-465.	4.1	5
197	Neurological Symptoms in US Government Personnel in Cuba—Reply. JAMA - Journal of the American Medical Association, 2018, 320, 604.	7.4	5
198	Cerebrospinal fluid purinomics as a biomarker approach to predict outcome after severe traumatic brain injury. Journal of Neurochemistry, 2022, 161, 173-186.	3.9	5

#	Article	IF	CITATIONS
199	Tackling concussion, beyond Hollywood. Lancet Neurology, The, 2016, 15, 662-663.	10.2	4
200	Time to be blunt about blast traumatic brain injury. Lancet Neurology, The, 2016, 15, 896-898.	10.2	4
201	High Resolution Computed Tomography Atlas of the Porcine Temporal Bone and Skull Base: Anatomical Correlates for Traumatic Brain Injury Research. Journal of Neurotrauma, 2019, 36, 1029-1039.	3.4	4
202	A Neprilysin Polymorphism and Amyloid-β Plaques Following Traumatic Brain Injury. Journal of Neurotrauma, 0, , 110306202455053.	3.4	4
203	Traumatic Brain Injury and Rationale for a Neuropsychological Diagnosis of Diffuse Axonal Injury. , 2016, , 267-293.		3
204	A Strategy Toward Bridging a Complete Spinal Cord Lesion Using Stretch-Grown Axons. Tissue Engineering - Part A, 2020, 26, 623-635.	3.1	3
205	Post-traumatic brain injury antithrombin III recovers Morris water maze cognitive performance, improving cued and spatial learning. Journal of Trauma and Acute Care Surgery, 2021, 91, 108-113.	2.1	3
206	Non-Linear Device Head Coupling and Temporal Delays in Large Animal Acceleration Models of Traumatic Brain Injury. Annals of Biomedical Engineering, 2022, , 1.	2.5	2
207	Long-Term Survival and Outgrowth of Mechanically Engineered Nervous Tissue Constructs Implanted Into Spinal Cord Lesions. Tissue Engineering, 2006, .	4.6	1
208	Neuroimaging of US Government Personnel Exposed to Directional Phenomena—Reply. JAMA - Journal of the American Medical Association, 2019, 322, 2249.	7.4	0
209	Genetic interplay with soccer ball heading. Nature Reviews Neurology, 2020, 16, 189-190.	10.1	0