List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12136420/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A combination of immune cell types identified through ensemble machine learning strategy detects altered profile in recurrent pregnancy loss: a pilot study. F&S Science, 2022, 3, 166-173.                                                       | 0.9  | 5         |
| 2  | Lack of Cell Cycle Inhibitor p21 and Low CD4+ T Cell Suppression in Newborns After Exposure to IFN-β.<br>Frontiers in Immunology, 2021, 12, 652965.                                                                                               | 4.8  | 1         |
| 3  | Antibiotic Intervention Affects Maternal Immunity During Gestation in Mice. Frontiers in Immunology, 2021, 12, 685742.                                                                                                                            | 4.8  | 7         |
| 4  | Clusters of Tolerogenic B Cells Feature in the Dynamic Immunological Landscape of the Pregnant<br>Uterus. Cell Reports, 2020, 32, 108204.                                                                                                         | 6.4  | 19        |
| 5  | Natural killer cell activation by respiratory syncytial virusâ€specific antibodies is decreased in infants<br>with severe respiratory infections and correlates with Fcâ€glycosylation. Clinical and Translational<br>Immunology, 2020, 9, e1112. | 3.8  | 27        |
| 6  | Cerebrospinal fluid immunoglobulins are increased in neonates exposed to Zika virus during foetal<br>life. Journal of Infection, 2020, 80, 419-425.                                                                                               | 3.3  | 5         |
| 7  | Biosynthetic homeostasis and resilience of the complement system in health and infectious disease.<br>EBioMedicine, 2019, 45, 303-313.                                                                                                            | 6.1  | 20        |
| 8  | Pathogenesis of Respiratory Syncytial Virus Infection in BALB/c Mice Differs Between Intratracheal and Intranasal Inoculation. Viruses, 2019, 11, 508.                                                                                            | 3.3  | 3         |
| 9  | Fc-Mediated Antibody Effector Functions During Respiratory Syncytial Virus Infection and Disease.<br>Frontiers in Immunology, 2019, 10, 548.                                                                                                      | 4.8  | 194       |
| 10 | Respiratory Syncytial Virus Infects Primary Neonatal and Adult Natural Killer Cells and Affects Their<br>Antiviral Effector Function. Journal of Infectious Diseases, 2019, 219, 723-733.                                                         | 4.0  | 23        |
| 11 | How uterine microbiota might be responsible for a receptive, fertile endometrium. Human<br>Reproduction Update, 2018, 24, 393-415.                                                                                                                | 10.8 | 176       |
| 12 | Streptococcus pneumoniae PspC Subgroup Prevalence in Invasive Disease and Differences in Contribution to Complement Evasion. Infection and Immunity, 2018, 86, .                                                                                  | 2.2  | 10        |
| 13 | Siglecâ€1 inhibits RSVâ€induced interferon gamma production by adult TÂcells in contrast to newborn<br>TAcells. European Journal of Immunology, 2018, 48, 621-631.                                                                                | 2.9  | 21        |
| 14 | Nationwide Study on the Course of Influenza A (H1N1) Infections in Hospitalized Children in the<br>Netherlands During the Pandemic 2009–2010. Pediatric Infectious Disease Journal, 2018, 37, e283-e291.                                          | 2.0  | 1         |
| 15 | Haemophilus is overrepresented in the nasopharynx of infants hospitalized with RSV infection and associated with increased viral load and enhanced mucosal CXCL8 responses. Microbiome, 2018, 6, 10.                                              | 11.1 | 49        |
| 16 | Phage-Derived Protein Induces Increased Platelet Activation and Is Associated with Mortality in Patients with Invasive Pneumococcal Disease. MBio, 2017, 8, .                                                                                     | 4.1  | 24        |
| 17 | Aptamers for respiratory syncytial virus detection. Scientific Reports, 2017, 7, 42794.                                                                                                                                                           | 3.3  | 34        |
| 18 | Human newborn B cells mount an interferon-α/β receptor-dependent humoral response to respiratory<br>syncytial virus. Journal of Allergy and Clinical Immunology, 2017, 139, 1997-2000.e4.                                                         | 2.9  | 11        |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Prospective observational study in two Dutch hospitals to assess the performance of inflammatory<br>plasma markers to determine disease severity of viral respiratory tract infections in children. BMJ<br>Open, 2017, 7, e014596. | 1.9  | 19        |
| 20 | <i>In Vitro</i> Enhancement of Respiratory Syncytial Virus Infection by Maternal Antibodies Does Not<br>Explain Disease Severity in Infants. Journal of Virology, 2017, 91, .                                                      | 3.4  | 19        |
| 21 | Platelets Modulate Innate Immune Response Against Human Respiratory Syncytial Virus <i>In Vitro</i> .<br>Viral Immunology, 2017, 30, 576-581.                                                                                      | 1.3  | 14        |
| 22 | Characteristics of RSV-Specific Maternal Antibodies in Plasma of Hospitalized, Acute RSV Patients under Three Months of Age. PLoS ONE, 2017, 12, e0170877.                                                                         | 2.5  | 27        |
| 23 | Decreased Cell Wall Galactosaminogalactan in <i>Aspergillus nidulans</i> Mediates Dysregulated<br>Inflammation in the Chronic Granulomatous Disease Host. Journal of Interferon and Cytokine<br>Research, 2016, 36, 488-498.       | 1.2  | 18        |
| 24 | A shortâ€ŧerm extremely low frequency electromagnetic field exposure increases circulating leukocyte<br>numbers and affects HPAâ€axis signaling in mice. Bioelectromagnetics, 2016, 37, 433-443.                                   | 1.6  | 14        |
| 25 | Transcriptome assists prognosis of disease severity in respiratory syncytial virus infected infants.<br>Scientific Reports, 2016, 6, 36603.                                                                                        | 3.3  | 35        |
| 26 | Actin- and clathrin-dependent mechanisms regulate interferon gamma release after stimulation of human immune cells with respiratory syncytial virus. Virology Journal, 2016, 13, 52.                                               | 3.4  | 4         |
| 27 | Distinct TLR-mediated cytokine production and immunoglobulin secretion in human newborn naÃ <sup>-</sup> ve B<br>cells. Innate Immunity, 2016, 22, 433-443.                                                                        | 2.4  | 34        |
| 28 | High pneumococcal density correlates with more mucosal inflammation and reduced respiratory syncytial virus disease severity in infants. BMC Infectious Diseases, 2016, 16, 129.                                                   | 2.9  | 15        |
| 29 | Deficient interleukin-17 production in response to <i>Mycobacterium abscessus</i> in cystic fibrosis.<br>European Respiratory Journal, 2016, 47, 990-993.                                                                          | 6.7  | 17        |
| 30 | Mucosal IgG Levels Correlate Better with Respiratory Syncytial Virus Load and Inflammation than Plasma IgG Levels. Vaccine Journal, 2016, 23, 243-245.                                                                             | 3.1  | 30        |
| 31 | The post-vaccine microevolution of invasive Streptococcus pneumoniae. Scientific Reports, 2015, 5, 14952.                                                                                                                          | 3.3  | 36        |
| 32 | Direct multiplexed whole genome sequencing of respiratory tract samples reveals full viral genomic information. Journal of Clinical Virology, 2015, 66, 6-11.                                                                      | 3.1  | 30        |
| 33 | Aptasensors for viral diagnostics. TrAC - Trends in Analytical Chemistry, 2015, 74, 58-67.                                                                                                                                         | 11.4 | 45        |
| 34 | Antibodies enhance CXCL10 production during RSV infection of infant and adult immune cells.<br>Cytokine, 2015, 76, 458-464.                                                                                                        | 3.2  | 11        |
| 35 | Nasopharyngeal gene expression, a novel approach to study the course of respiratory syncytial virus infection. European Respiratory Journal, 2015, 45, 718-725.                                                                    | 6.7  | 21        |
| 36 | The adult nasopharyngeal microbiome as a determinant of pneumococcal acquisition. Microbiome, 2014, 2, 44.                                                                                                                         | 11.1 | 82        |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Avidity of Antibodies against Infecting Pneumococcal Serotypes Increases with Age and Severity of Disease. Vaccine Journal, 2014, 21, 904-907.                                                                      | 3.1  | 12        |
| 38 | Effect of antibiotic streamlining on patient outcome in pneumococcal bacteraemia. Journal of Antimicrobial Chemotherapy, 2014, 69, 2258-2264.                                                                       | 3.0  | 23        |
| 39 | The role of ZmpC in the clinical manifestation of invasive pneumococcal disease. International Journal of Medical Microbiology, 2014, 304, 984-989.                                                                 | 3.6  | 10        |
| 40 | Integration of clinical point-of-care requirements in a DNA microarray genotyping test. Biosensors and Bioelectronics, 2014, 61, 605-611.                                                                           | 10.1 | 1         |
| 41 | Recognition of Streptococcus pneumoniae and Muramyl Dipeptide by NOD2 Results in Potent Induction of MMP-9, Which Can Be Controlled by Lipopolysaccharide Stimulation. Infection and Immunity, 2014, 82, 4952-4958. | 2.2  | 14        |
| 42 | Effects of 7-valent pneumococcal conjugate 1 vaccine on the severity of adult 2 bacteremic pneumococcal pneumonia. Vaccine, 2014, 32, 3989-3994.                                                                    | 3.8  | 10        |
| 43 | CD4+ T-cell counts and interleukin-8 and CCL-5 plasma concentrations discriminate disease severity in children with RSV infection. Pediatric Research, 2013, 73, 187-193.                                           | 2.3  | 46        |
| 44 | IFN-γ-Stimulated Neutrophils Suppress Lymphocyte Proliferation through Expression of PD-L1. PLoS<br>ONE, 2013, 8, e72249.                                                                                           | 2.5  | 173       |
| 45 | Respiratory syncytial virus infection augments <scp>NOD</scp> 2 signaling in an<br><scp>IFN</scp> â€i²â€dependent manner in human primary cells. European Journal of Immunology, 2012, 42,<br>2727-2735.            | 2.9  | 42        |
| 46 | Transcriptome Kinetics of Circulating Neutrophils during Human Experimental Endotoxemia. PLoS<br>ONE, 2012, 7, e38255.                                                                                              | 2.5  | 38        |
| 47 | Recognition and Blocking of Innate Immunity Cells by Candida albicans Chitin. Infection and Immunity, 2011, 79, 1961-1970.                                                                                          | 2.2  | 172       |
| 48 | Extremely low frequency electromagnetic field exposure does not modulate toll-like receptor signaling in human peripheral blood mononuclear cells. Cytokine, 2011, 54, 43-50.                                       | 3.2  | 19        |
| 49 | The role of Toll-like receptors and C-type lectins for vaccination against Candida albicans. Vaccine, 2010, 28, 614-622.                                                                                            | 3.8  | 40        |
| 50 | Human Dectin-1 Deficiency and Mucocutaneous Fungal Infections. New England Journal of Medicine, 2009, 361, 1760-1767.                                                                                               | 27.0 | 671       |
| 51 | Engagement of NOD2 has a dual effect on proILâ€1β mRNA transcription and secretion of bioactive ILâ€1β.<br>European Journal of Immunology, 2008, 38, 184-191.                                                       | 2.9  | 69        |
| 52 | Syk kinase is required for collaborative cytokine production induced through Dectinâ€1 and Tollâ€like<br>receptors. European Journal of Immunology, 2008, 38, 500-506.                                              | 2.9  | 328       |
| 53 | Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cellular Microbiology, 2008, 10, 2058-2066.                                                              | 2.1  | 296       |
| 54 | Crohn's disease patients homozygous for the 3020insC NOD2 mutation have a defective NOD2/TLR4<br>crossâ€ŧolerance to intestinal stimuli. Immunology, 2008, 123, 600-605.                                            | 4.4  | 53        |

| #  | ARTICLE                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Differential function of the NACHT-LRR (NLR) members Nod1 and Nod2 in arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9017-9022.                                                                          | 7.1  | 54        |
| 56 | Immune Recognition of <i>Candida albicans</i> βâ€glucan by Dectinâ€1. Journal of Infectious Diseases, 2007,<br>196, 1565-1571.                                                                                                                                   | 4.0  | 277       |
| 57 | <i>Mycobacterium paratuberculosis</i> is recognized by Toll-like receptors and NOD2. Journal of<br>Leukocyte Biology, 2007, 82, 1011-1018.                                                                                                                       | 3.3  | 133       |
| 58 | Defective acute inflammation in Crohn's disease. Lancet, The, 2006, 368, 577-578.                                                                                                                                                                                | 13.7 | 2         |
| 59 | To the Editor. European Journal of Immunology, 2006, 36, 2817-2818.                                                                                                                                                                                              | 2.9  | 2         |
| 60 | Recognition of Fungal Pathogens by Toll-Like Receptors. Current Pharmaceutical Design, 2006, 12, 4195-4201.                                                                                                                                                      | 1.9  | 116       |
| 61 | Triggering receptor expressed on myeloid cells-1 (TREM-1) amplifies the signals induced by the<br>NACHT-LRR (NLR) pattern recognition receptors. Journal of Leukocyte Biology, 2006, 80, 1454-1461.                                                              | 3.3  | 112       |
| 62 | Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by<br>lectin and Toll-like receptors. Journal of Clinical Investigation, 2006, 116, 1642-1650.                                                                        | 8.2  | 632       |
| 63 | NOD2 and Toll-Like Receptors Are Nonredundant Recognition Systems of Mycobacterium tuberculosis.<br>PLoS Pathogens, 2005, 1, e34.                                                                                                                                | 4.7  | 304       |
| 64 | Nucleotide-Binding Oligomerization Domain-2 Modulates Specific TLR Pathways for the Induction of Cytokine Release. Journal of Immunology, 2005, 174, 6518-6523.                                                                                                  | 0.8  | 248       |
| 65 | IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1Â and IL-6 production through a caspase 1-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16309-16314. | 7.1  | 277       |
| 66 | The Frameshift Mutation in Nod2 Results in Unresponsiveness Not Only to Nod2- but Also<br>Nod1-activating Peptidoglycan Agonists. Journal of Biological Chemistry, 2005, 280, 35859-35867.                                                                       | 3.4  | 73        |