
Jerome Y Yager

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12132376/publications.pdf Version: 2024-02-01

IEROME Y YACER

#	Article	IF	CITATIONS
1	Moderate hypothermia in neonatal encephalopathy: Efficacy outcomes. Pediatric Neurology, 2005, 32, 11-17.	2.1	458
2	Moderate hypothermia in neonatal encephalopathy: Safety outcomes. Pediatric Neurology, 2005, 32, 18-24.	2.1	243
3	Symptomatic Neonatal Arterial Ischemic Stroke: The International Pediatric Stroke Study. Pediatrics, 2011, 128, e1402-e1410.	2.1	225
4	Prolonged Seizures Exacerbate Perinatal Hypoxic-Ischemic Brain Damage. Pediatric Research, 2001, 50, 445-454.	2.3	215
5	Epidemiology and Outcomes of Arterial Ischemic Stroke in Children: The Canadian Pediatric Ischemic Stroke Registry. Pediatric Neurology, 2017, 69, 58-70.	2.1	213
6	Iron deficiency: A cause of stroke in infants and children. Pediatric Neurology, 1997, 16, 50-53.	2.1	183
7	Risk of Recurrent Arterial Ischemic Stroke in Childhood. Stroke, 2016, 47, 53-59.	2.0	138
8	The Effect of Age on Susceptibility to Hypoxic-Ischemic Brain Damage. Neuroscience and Biobehavioral Reviews, 1997, 21, 167-174.	6.1	137
9	Rodent Hypoxia–Ischemia Models for Cerebral Palsy Research: A Systematic Review. Frontiers in Neurology, 2016, 7, 57.	2.4	127
10	Neurologic manifestations of iron deficiency in childhood. Pediatric Neurology, 2002, 27, 85-92.	2.1	123
11	Effect of Insulin-Induced and Fasting Hypoglycemia on Perinatal Hypoxic-Ischemic Brain Damage. Pediatric Research, 1992, 31, 138-142.	2.3	118
12	Animal Models of Perinatal Hypoxic-Ischemic Brain Damage. Pediatric Neurology, 2009, 40, 156-167.	2.1	116
13	Effect of Mild Hypothermia on Cerebral Energy Metabolism During the Evolution of Hypoxic-Ischemic Brain Damage in the Immature Rat. Stroke, 1996, 27, 919-926.	2.0	101
14	Serum Cytokines in a Clinical Trial of Hypothermia for Neonatal Hypoxic-Ischemic Encephalopathy. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1888-1896.	4.3	96
15	Preventing hyperthermia decreases brain damage following neonatal hypoxic-ischemic seizures. Brain Research, 2004, 1011, 48-57.	2.2	92
16	Glucose, lactic acid, and perinatal hypoxic-ischemic brain damage. Pediatric Neurology, 1992, 8, 3-12.	2.1	83
17	Prolonged Neonatal Seizures Exacerbate Hypoxic-Ischemic Brain Damage: Correlation with Cerebral Energy Metabolism and Excitatory Amino Acid Release. Developmental Neuroscience, 2002, 24, 367-381.	2.0	77
18	Animal models of hypoxic-ischemic brain damage in the newborn. Seminars in Pediatric Neurology, 2004, 11, 31-46.	2.0	66

JEROME Y YAGER

#	Article	IF	CITATIONS
19	The effect of age on susceptibility to brain damage in a model of global hemispheric hypoxia-ischemia. Developmental Brain Research, 1996, 93, 143-154.	1.7	65
20	Does Iron Deficiency Raise the Seizure Threshold?. Journal of Child Neurology, 1995, 10, 105-109.	1.4	61
21	The Association Between Iron Deficiency and Febrile Seizures in Childhood. Clinical Pediatrics, 2009, 48, 420-426.	0.8	59
22	Hypoglycemic injury to the immature brain. Clinics in Perinatology, 2002, 29, 651-674.	2.1	56
23	Altered Circulating Leukocytes and Their Chemokines in a Clinical Trial of Therapeutic Hypothermia for Neonatal Hypoxic Ischemic Encephalopathy*. Pediatric Critical Care Medicine, 2013, 14, 786-795.	0.5	54
24	Correlation between content of high-energy phosphates and hypoxic-ischemic damage in immature and mature astrocytes. Developmental Brain Research, 1994, 82, 62-68.	1.7	52
25	The impact of pediatric traumatic brain injury (TBI) on family functioning: A systematic review. Journal of Pediatric Rehabilitation Medicine, 2014, 7, 241-254.	0.5	45
26	Mechanisms of neurodegeneration after severe hypoxic-ischemic injury in the neonatal rat brain. Brain Research, 2015, 1629, 94-103.	2.2	40
27	Prevalence Estimate of Cerebral Palsy in Northern Alberta: Births, 2008-2010. Canadian Journal of Neurological Sciences, 2017, 44, 366-374.	0.5	35
28	Pioglitazone attenuates hepatic inflammation and fibrosis in phosphatidylethanolamine <i>N</i> -methyltransferase-deficient mice. American Journal of Physiology - Renal Physiology, 2016, 310, G526-G538.	3.4	32
29	Neurodevelopmental Reflex Testing in Neonatal Rat Pups. Journal of Visualized Experiments, 2017, , .	0.3	31
30	Astrocyte maturation and susceptibility to ischaemia or substrate deprivation. NeuroReport, 1992, 3, 1135-1137.	1.2	30
31	A New Model for Determining the Influence of Age and Sex on Functional Recovery following Hypoxic-Ischemic Brain Damage. Developmental Neuroscience, 2005, 27, 112-120.	2.0	29
32	Age at stroke onset influences the clinical outcome and healthâ€related quality of life in pediatric ischemic stroke survivors. Developmental Medicine and Child Neurology, 2015, 57, 1027-1034.	2.1	27
33	Ethics challenges of transition from paediatric to adult health care services for young adults with neurodevelopmental disabilities. Paediatrics and Child Health, 2014, 19, 65-68.	0.6	26
34	The extent of intrauterine growth restriction determines the severity of cerebral injury and neurobehavioural deficits in rodents. PLoS ONE, 2017, 12, e0184653.	2.5	25
35	Vitamin D insufficiency in neonatal hypoxic–ischemic encephalopathy. Pediatric Research, 2017, 82, 55-62.	2.3	22
36	Treatment of the Term Newborn With Brain Injury: Simplicity As the Mother of Invention. Pediatric Neurology, 2009, 40, 237-243.	2.1	18

JEROME Y YAGER

#	Article	IF	CITATIONS
37	Health-related quality of life and its determinants in paediatric arterial ischaemic stroke survivors. Archives of Disease in Childhood, 2018, 103, 930-936.	1.9	18
38	Preventing childhood and lifelong disability: Maternal dietary supplementation for perinatal brain injury. Pharmacological Research, 2019, 139, 228-242.	7.1	18
39	Translational Stroke Research in the Developing Brain. Pediatric Neurology, 2006, 34, 459-463.	2.1	16
40	Bilateral pial synangiosis in a child with PHACE syndrome. Journal of Neurosurgery: Pediatrics, 2016, 17, 70-75.	1.3	13
41	Consumption of broccoli sprouts during late gestation and lactation confers protection against developmental delay induced by maternal inflammation. Behavioural Brain Research, 2016, 307, 239-249.	2.2	11
42	Sustained Release of Dexamethasone from Sulfobutyl Ether βâ€cyclodextrin Modified Selfâ€Assembling Peptide Nanoscaffolds in a Perinatal Rat Model of Hypoxia–Ischemia. Advanced Healthcare Materials, 2019, 8, e1900083.	7.6	11
43	Drug delivery platforms for neonatal brain injury. Journal of Controlled Release, 2021, 330, 765-787.	9.9	7
44	Cerebral Venous Thrombosis in Newborns, Infants and Children. , 2007, 23, 122-131.		6
45	Evidence for Therapeutic Intervention in the Prevention of Cerebral Palsy: Hope from Animal Model Research. Seminars in Pediatric Neurology, 2013, 20, 75-83.	2.0	6
46	How does biological sex affect the physiological response to nanomaterials?. Nano Today, 2021, 41, 101292.	11.9	6
47	Sulforaphane (SFA) protects neuronal cells from oxygen & glucose deprivation (OGD). PLoS ONE, 2021, 16, e0248777.	2.5	5
48	Controversies and Advances in Neonatal Neurology: Overview. Pediatric Neurology, 2009, 40, 143-144.	2.1	4
49	After a child's acquired brain injury (ABI): An ethnographic study of being a parent. Journal of Pediatric Rehabilitation Medicine, 2016, 9, 303-313.	0.5	4
50	Learning and memory profiles in youth with perinatal stroke: a study of the Child and Adolescent Memory Profile (ChAMP). Child Neuropsychology, 2022, 28, 99-106.	1.3	4
51	ISDN2014_0189: Sulforaphane is not additive in combination with hypothermia in a neonatal rat model of hypoxia–ischemia. International Journal of Developmental Neuroscience, 2015, 47, 55-55.	1.6	1
52	Executive behavior and functional abilities in children with perinatal stroke and the associated caregiver impact. Child Neuropsychology, 2021, 27, 83-95.	1.3	1
53	Stroke in Children. Circulation, 2009, 119, 1361-1362.	1.6	0
54	Commentaries on â€~Iron supplementation for breathâ€holding attacks in children'. Evidence-Based Child Health: A Cochrane Review Journal, 2010, 5, 1608-1611.	2.0	0

JEROME Y YAGER

#	Article	IF	CITATIONS
55	Glucose and Perinatal Brain Injury. , 2012, , 143-162.		Ο
56	ISDN2014_0147: The use of broccoli sprouts as a neuropreventative agent in a neonatal rat model of the fetal inflammatory response. International Journal of Developmental Neuroscience, 2015, 47, 43-43.	1.6	0
57	Glucose and Perinatal Brain Injury—Questions and Controversies. , 2019, , 141-161.		0
58	Improved care and management of paediatric neurological patients evaluated at a paediatric Rapid Access Neurology clinic: A pilot study. Journal of Paediatrics and Child Health, 2021, 57, 908-912.	0.8	0
59	Glucose and Perinatal Brain Injury: Questions and Controversies. , 2008, , 153-171.		О
60	Bacteriophage carriers localize in the brain of a rat model of neonatal hypoxicâ€ischemic encephalopathy. Biotechnology Journal, 2022, 17, 2100226.	3.5	0