
Meiling Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12132290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer-chelation approach to high-performance Fe-Nx-C catalyst towards oxygen reduction reaction. Chinese Chemical Letters, 2023, 34, 107455.	4.8	3
2	Preparation Strategy Using Pre-Nucleation Coupled with In Situ Reduction for a High-Performance Catalyst towards Selective Hydrogen Production from Formic Acid. Catalysts, 2022, 12, 325.	1.6	3
3	Materials Engineering toward Durable Electrocatalysts for Proton Exchange Membrane Fuel Cells. Advanced Energy Materials, 2022, 12, .	10.2	61
4	Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis. Journal of Materials Chemistry A, 2022, 10, 13170-13189.	5.2	47
5	Quasi-Covalently Coupled Ni–Cu Atomic Pair for Synergistic Electroreduction of CO ₂ . Journal of the American Chemical Society, 2022, 144, 9661-9671.	6.6	134
6	Oxygen-vacancy-rich TiO2 enables highly active and durable water electrolysis of urchin-like RuO2 catalyst. Science China Technological Sciences, 2022, 65, 2317-2324.	2.0	6
7	Highly Stable Low-Cost Electrochemical Gas Sensor with an Alcohol-Tolerant N,S-Codoped Non-Precious Metal Catalyst Air Cathode. ACS Sensors, 2021, 6, 752-763.	4.0	7
8	3d-Orbital Occupancy Regulated Ir-Co Atomic Pair Toward Superior Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2021, 11, 8837-8846.	5.5	110
9	Interfacial Proton Transfer for Hydrogen Evolution at the Sub-Nanometric Platinum/Electrolyte Interface. ACS Applied Materials & Interfaces, 2021, 13, 47252-47261.	4.0	4
10	Hierarchically Porous Multimetalâ€Based Carbon Nanorod Hybrid as an Efficient Oxygen Catalyst for Rechargeable Zinc–Air Batteries. Advanced Functional Materials, 2020, 30, 1908167.	7.8	105
11	Evidence for interfacial geometric interactions at metal–support interfaces and their influence on the electroactivity and stability of Pt nanoparticles. Journal of Materials Chemistry A, 2020, 8, 1368-1377.	5.2	25
12	A Triphasic Bifunctional Oxygen Electrocatalyst with Tunable and Synergetic Interfacial Structure for Rechargeable Znâ€Air Batteries. Advanced Energy Materials, 2020, 10, 1903003.	10.2	74
13	Tensile-strained ruthenium phosphide by anion substitution for highly active and durable hydrogen evolution. Nano Energy, 2020, 77, 105212.	8.2	39
14	Manipulating Auâ^'CeO ₂ Interfacial Structure Toward Ultrahigh Mass Activity and Selectivity for CO ₂ Reduction. ChemSusChem, 2020, 13, 6621-6628.	3.6	15
15	Preferentially Engineering FeN ₄ Edge Sites onto Graphitic Nanosheets for Highly Active and Durable Oxygen Electrocatalysis in Rechargeable Zn–Air Batteries. Advanced Materials, 2020, 32, e2004900.	11.1	235
16	Graphene Quantum Dotsâ€Based Advanced Electrode Materials: Design, Synthesis and Their Applications in Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials, 2020, 10, 2001275.	10.2	109
17	Advanced Electrode Materials Comprising of Structureâ€Engineered Quantum Dots for Highâ€Performance Asymmetric Microâ€Supercapacitors. Advanced Energy Materials, 2020, 10, 1903724.	10.2	36
18	A "trimurti" heterostructured hybrid with an intimate CoO/Co _x P interface as a robust bifunctional air electrode for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 9177-9184.	5.2	72

#	Article	IF	CITATIONS
19	Defectâ€Enriched Nitrogen Doped–Graphene Quantum Dots Engineered NiCo ₂ S ₄ Nanoarray as Highâ€Efficiency Bifunctional Catalyst for Flexible Znâ€Air Battery. Small, 2019, 15, e1903610.	5.2	84
20	Climbing the Apex of the ORR Volcano Plot via Binuclear Site Construction: Electronic and Geometric Engineering. Journal of the American Chemical Society, 2019, 141, 17763-17770.	6.6	436
21	A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 9742-9747.	1.6	59
22	Rücktitelbild: A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction (Angew.) Tj ETQ	q0 0 0 rgE 1.6	BT /Overlock 1
23	A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 9640-9645.	7.2	312
24	Engineering Energy Level of Metal Center: Ru Single-Atom Site for Efficient and Durable Oxygen Reduction Catalysis. Journal of the American Chemical Society, 2019, 141, 19800-19806.	6.6	288
25	Hydrogen etching induced hierarchical meso/micro-pore structure with increased active density to boost ORR performance of Fe-N-C catalyst. Journal of Energy Chemistry, 2019, 35, 17-23.	7.1	53
26	Low-temperature synthesis of nitrogen doped carbon nanotubes as promising catalyst support for methanol oxidation. Journal of Energy Chemistry, 2019, 28, 118-122.	7.1	28
27	Microporous Framework Induced Synthesis of Single-Atom Dispersed Fe-N-C Acidic ORR Catalyst and Its in Situ Reduced Fe-N ₄ Active Site Identification Revealed by X-ray Absorption Spectroscopy. ACS Catalysis, 2018, 8, 2824-2832.	5.5	433
28	Highly polarized carbon nano-architecture as robust metal-free catalyst for oxygen reduction in polymer electrolyte membrane fuel cells. Nano Energy, 2018, 49, 23-30.	8.2	90
29	Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site. Nano Energy, 2018, 46, 396-403.	8.2	319
30	Colloidal silica assisted fabrication of N,O,S-tridoped porous carbon nanosheets with excellent oxygen reduction performance. Chemical Communications, 2018, 54, 4017-4020.	2.2	14
31	Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nature Communications, 2018, 9, 2120.	5.8	461
32	Correlating Fe source with Fe-N-C active site construction: Guidance for rational design of high-performance ORR catalyst. Journal of Energy Chemistry, 2018, 27, 1668-1673.	7.1	104
33	Structural Advantage Induced by Sulfur to Boost the Catalytic Performance of FeNC Catalyst towards the Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 3653-3658.	1.8	13
34	Nanoporous IrO ₂ catalyst with enhanced activity and durability for water oxidation owing to its micro/mesoporous structure. Nanoscale, 2017, 9, 9291-9298.	2.8	66
35	Advanced architecture carbon with in-situ embedded ultrafine titanium dioxide as outstanding support material for platinum catalysts towards methanol electrooxidation. Electrochimica Acta, 2017, 235, 508-518.	2.6	11
36	Selectively doping pyridinic and pyrrolic nitrogen into a 3D porous carbon matrix through template-induced edge engineering: enhanced catalytic activity towards the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 21709-21714.	5.2	76

MEILING XIAO

#	Article	IF	CITATIONS
37	Nitrogen, Iron-codoped Mesoporous Carbon with bimodal-pores as an Efficient Catalyst for the Oxygen Reduction Reaction. Electrochimica Acta, 2016, 209, 551-556.	2.6	11
38	Significantly enhanced oxygen reduction reaction performance of N-doped carbon by heterogeneous sulfur incorporation: synergistic effect between the two dopants in metal-free catalysts. Journal of Materials Chemistry A, 2016, 4, 7422-7429.	5.2	71
39	Metal–Organic Framework-Induced Synthesis of Ultrasmall Encased NiFe Nanoparticles Coupling with Graphene as an Efficient Oxygen Electrode for a Rechargeable Zn–Air Battery. ACS Catalysis, 2016, 6, 6335-6342.	5.5	210
40	Active Pt ₃ Ni (111) Surface of Pt ₃ Ni Icosahedron for Oxygen Reduction. ACS Applied Materials & Interfaces, 2016, 8, 30066-30071.	4.0	21
41	Titanium dioxide encapsulated in nitrogen-doped carbon enhances the activity and durability of platinum catalyst for Methanol electro-oxidation reaction. Journal of Power Sources, 2015, 292, 78-86.	4.0	24
42	The enhanced electrocatalytic activity and stability of supported Pt nanopartciles for methanol electro-oxidation through the optimized oxidation degree of carbon nanotubes. Journal of Power Sources, 2015, 281, 34-43.	4.0	35
43	Rapid synthesis of a PtRu nano-sponge with different surface compositions and performance evaluation for methanol electrooxidation. Nanoscale, 2015, 7, 9467-9471.	2.8	71
44	Meso/Macroporous Nitrogenâ€Doped Carbon Architectures with Iron Carbide Encapsulated in Graphitic Layers as an Efficient and Robust Catalyst for the Oxygen Reduction Reaction in Both Acidic and Alkaline Solutions. Advanced Materials, 2015, 27, 2521-2527.	11.1	521
45	Surface Oxidized Cobalt-Phosphide Nanorods As an Advanced Oxygen Evolution Catalyst in Alkaline Solution. ACS Catalysis, 2015, 5, 6874-6878.	5.5	441
46	Growth mechanism and active site probing of Fe ₃ C@N-doped carbon nanotubes/C catalysts: guidance for building highly efficient oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 21451-21459.	5.2	65
47	Enhanced Catalytic Performance of Compositionâ€īunable PtCu Nanowire Networks for Methanol Electrooxidation. ChemCatChem, 2014, 6, 2825-2831.	1.8	54
48	Promotion of Mesoporous Vanadium Carbide Incorporated on Resorcinol–Formaldehyde Resin Carbon Composites with High‣urfaceâ€Areas on Platinum Catalysts for Methanol Electrooxidation. ChemCatChem, 2014, 6, 3387-3395.	1.8	6
49	Highly Active PtAu Nanowire Networks for Formic Acid Oxidation. ChemPlusChem, 2014, 79, 1123-1128.	1.3	24
50	Pd@Pt/C catalysts fabricated using chemisorbed CO as in situ reductant: advanced catalytic behaviour for formic acid oxidation. RSC Advances, 2014, 4, 57819-57822.	1.7	0
51	The construction of nitrogen-doped graphitized carbon–TiO2 composite to improve the electrocatalyst for methanol oxidation. Carbon, 2014, 72, 114-124.	5.4	58
52	Nitrogen-doped carbon–graphene composites enhance the electrocatalytic performance of the supported Pt catalysts for methanol oxidation. Chemical Communications, 2014, 50, 12201-12203.	2.2	37
53	Pt–Pb hollow sphere networks: self-sacrifice-templating method and enhanced activity for formic acid electrooxidation. RSC Advances, 2013, 3, 1763.	1.7	15