
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12131643/publications.pdf Version: 2024-02-01

TIANYI SUN

#	Article	IF	CITATIONS
1	Measurements of energy dependence of properties of polycapillary x-ray lens by using organic glass as a scatterer. Journal of Applied Physics, 2005, 97, 124904.	2.5	62
2	Spatially Resolved In Situ Measurements of the Ion Distribution Near the Surface of Electrode in a Steady-State Diffusion in an Electrolytic Tank with Confocal Micro X-ray Fluorescence. Analytical Chemistry, 2014, 86, 362-366.	6.5	31
3	Full-field transmission x-ray imaging with confocal polycapillary x-ray optics. Journal of Applied Physics, 2013, 113, 053104.	2.5	27
4	Elemental depth profile of faux bamboo paint in Forbidden City studied by synchrotron radiation confocal µâ€XRF. X-Ray Spectrometry, 2008, 37, 595-598.	1.4	26
5	Characterization of a confocal three-dimensional micro X-ray fluorescence facility based on polycapillary X-ray optics and Kirkpatrick–Baez mirrors. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 76-80.	2.9	25
6	Characterization and applications of a new tabletop confocal micro X-ray fluorescence setup. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 2638-2642.	1.4	24
7	Study on the measurement of properties of polycapillary X-ray lens. Nuclear Instruments & Methods in Physics Research B, 2004, 226, 651-658.	1.4	23
8	Quantitative analysis of single aerosol particles with confocal micro-X-ray fluorescence spectrometer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 622, 295-297.	1.6	23
9	Application of confocal technology based on polycapillary X-ray optics in three-dimensional diffraction scanning analysis. Nuclear Instruments & Methods in Physics Research B, 2014, 323, 25-29.	1.4	22
10	Confocal three-dimensional micro X-ray scatter imaging for non-destructive detecting foreign bodies with low density and low-Z materials in food products. Food Control, 2015, 54, 120-125.	5.5	22
11	Single bounce ellipsoidal glass monocapillary condenser for X-ray nano-imaging. Optics Communications, 2017, 398, 91-94.	2.1	22
12	Characterization of polycapillary X-ray lens for application in confocal three-dimensional energy-dispersive micro X-ray diffraction experiments. Journal of Applied Crystallography, 2007, 40, 1169-1173.	4.5	19
13	Focusing synchrotron radiation using a polycapillary half-focusing X-ray lens for imaging. Journal of Synchrotron Radiation, 2009, 16, 116-118.	2.4	18
14	Simulation of transmitted X-rays in a polycapillary X-ray lens. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 795, 186-191.	1.6	18
15	Application of a combined system of polycapillary x-ray lens and toroidal mirror in micro-x-ray-absorption fine-structure facility. Journal of Applied Physics, 2006, 99, 094907.	2.5	16
16	Performance of polycapillary X-ray optics for confocal energy-dispersive small-angle X-ray scattering. Journal of Applied Crystallography, 2013, 46, 1880-1883.	4.5	15
17	Characterization of a polycapillary focusing X-ray lens for application in spatially resolved EXAFS experiments. Chemical Physics Letters, 2007, 439, 412-414.	2.6	14
18	Confocal X-ray technology based on capillary X-ray optics. Reviews in Analytical Chemistry, 2015, 34, .	3.2	14

#	Article	IF	CITATIONS
19	Determination of the properties of a polycapillary x-ray lens. X-Ray Spectrometry, 2006, 35, 120-124.	1.4	13
20	An energy dispersive micro X-ray diffractometer based on a combined system of polycapillary optics. Nuclear Instruments & Methods in Physics Research B, 2007, 262, 153-156.	1.4	12
21	Application of confocal X-ray fluorescence micro-spectroscopy to the investigation of paint layers. Applied Radiation and Isotopes, 2014, 94, 109-112.	1.5	12
22	Quantitative analysis of single aerosol particles using polycapillary X-ray optics. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 1194-1197.	2.9	11
23	Fine structures of divergence of polycapillary X-ray optics. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 2758-2761.	1.4	11
24	Performances for confocal X-ray diffraction technology based on polycapillary slightly focusing X-ray optics. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 723, 1-4.	1.6	11
25	Confocal depth-resolved fluorescence micro-X-ray absorption spectroscopy for the study of cultural heritage materials: a new mobile endstation at the Beijing Synchrotron Radiation Facility. Journal of Synchrotron Radiation, 2017, 24, 1000-1005.	2.4	11
26	Performances of a prototype point-contact germanium detector immersed in liquid nitrogen for light dark matter search. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	11
27	Adjustment of confocal configuration for capillary X-ray optics with a liquid secondary target. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 729, 565-568.	1.6	10
28	Performances of capillary X-ray optics for confocal three-dimensional micro-X-ray fluorescence technology. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 606, 829-832.	1.6	9
29	Size-Resolved Source Apportionment of Aerosol Particles with a Confocal Micro X-Ray Fluorescence Spectrometer. Applied Spectroscopy, 2011, 65, 1398-1402.	2.2	9
30	In-situ and elementally resolved determination of the thickness uniformity of multi-ply films by confocal micro XRF. Applied Radiation and Isotopes, 2014, 90, 84-88.	1.5	9
31	A confocal three-dimensional micro X-ray scattering technology based on Rayleigh to Compton ratio for identifying materials with similar density and different weight percentages of low-Z elements. Radiation Physics and Chemistry, 2015, 112, 163-168.	2.8	9
32	Authentication of vegetable oils by confocal X-ray scattering analysis with coherent/incoherent scattered X-rays. Food Chemistry, 2016, 210, 435-441.	8.2	9
33	Annular beam high-intensity X-ray diffraction based on an ellipsoidal single-bounce monocapillary. Journal of Applied Crystallography, 2016, 49, 627-631.	4.5	9
34	Application of particle swarm optimization in the design of a mono-capillary X-ray lens. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 953, 163077.	1.6	9
35	First experimental constraints on WIMP couplings in the effective field theory framework from CDEX. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	8
36	The application of confocal technology based on polycapillary X-ray optics in surface topography. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 721, 73-75.	1.6	7

#	Article	IF	CITATIONS
37	In situ analysis of electrocrystallization process of metal electrodeposition with confocal energy dispersive X-ray diffraction based on polycapillary X-ray optics. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 785, 201-205.	1.6	7
38	Performance of assembled X-ray optics consisted of a polycapillary X-ray optics and a monocapillary X-ray optics for micro X-ray fluorescence spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 165, 105770.	2.9	7
39	Combined optic system based on polycapillary X-ray optics and single-bounce monocapillary optics for focusing X-rays from a conventional laboratory X-ray source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 802. 5-9.	1.6	6
40	Energy-dispersive small-angle X-ray scattering with cone collimation using X-ray capillary optics. Review of Scientific Instruments, 2016, 87, 093106.	1.3	6
41	Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics. Journal of Chemical Physics, 2016, 144, 104201.	3.0	6
42	High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry. Nuclear Instruments & Methods in Physics Research B, 2016, 373, 91-97.	1.4	6
43	13.1 micrometers hard X-ray focusing by a new type monocapillary X-ray optic designed for common laboratory X-ray source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 888, 13-17.	1.6	6
44	Measurement of the inner diameter of monocapillary with confocal x-ray scattering technology based on capillary x-ray optics. Applied Optics, 2019, 58, 1291.	1.8	6
45	Source apportionment of aerosol particles using polycapillary slightly focusing X-ray lens. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 604, 755-759.	1.6	5
46	Identification of origin of single aerosol particles using polycapillary X-ray lens. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 171-174.	1.4	5
47	Measurement of grain size of polycrystalline materials with confocal energy dispersive micro-X-ray diffraction technology based on polycapillary X-ray optics. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 764, 1-6.	1.6	5
48	Numerical design of X-ray tabletop Talbot interferometer using polycapillary optics as two-dimensional gratings with high aspect ratio. Optics Communications, 2015, 356, 202-207.	2.1	5
49	The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	5
50	Confocal total reflection X-ray fluorescence technology based on an elliptical monocapillary and a parallel polycapillary X-ray optics. Applied Radiation and Isotopes, 2018, 137, 172-176.	1.5	5
51	Study on the X-ray transmission characteristics of monolithic poly-capillary quasi-parallel lens composed with different diameter tubes. Optics Communications, 2019, 439, 295-303.	2.1	5
52	Characterizing the inner surface of parabolic monocapillary with contrast-enhanced micro-CT technology and ray-tracing computing method. Optics Communications, 2020, 475, 126182.	2.1	5
53	Quasi-parallel X-ray microbeam obtained using a combined system of polycapillary optics. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 577, 437-439.	1.6	4
54	Performance of polycapillary xâ€ray lens for xâ€ray sources with various spot sizes. X-Ray Spectrometry, 2007, 36, 377-380.	1.4	4

TIANXI SUN

#	Article	IF	CITATIONS
55	Size-resolved source apportionment of aerosol particles using polycapillary X-ray lens with a plateau in its focal spot. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 3554-3560.	1.4	4
56	The surface morphology analysis based on progressive approximation method using confocal three-dimensional micro X-ray fluorescence. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 122, 127-131.	2.9	4
57	Simulation of X-ray transmission and spatial imaging of polycapillary lenses with square cross-sections. Optics Communications, 2018, 420, 205-210.	2.1	4
58	Quantitative analysis of the elemental composition of ion liquid with confocal X-ray fluorescence based on peak to background ratio. Radiation Physics and Chemistry, 2019, 162, 168-171.	2.8	4
59	Measuring the average slope error of a single-bounce ellipsoidal glass monocapillary X-ray condenser based on an X-ray source with an adjustable source size. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 934, 36-40.	1.6	4
60	Enhancement of properties of high-density material coated glass monocapillary X-ray condenser based on atomic layer deposition. Optics Communications, 2020, 464, 125544.	2.1	4
61	Monochromatic X-ray imaging using a combination of doubly curved crystal and polycapillary X-ray lens. Journal of X-Ray Science and Technology, 2015, 23, 141-146.	1.0	3
62	Single-bounce Ellipsoidal Capillary for X-ray microscopes: Design and Measurements. Microscopy and Microanalysis, 2018, 24, 284-287.	0.4	3
63	Application of confocal X-ray fluorescence based on capillary X-ray optics in nondestructively measuring the inner diameter of monocapillary optics. Optics Communications, 2019, 436, 38-41.	2.1	3
64	Confocal threeâ€dimensional microâ€Xâ€ray fluorescence spectroscopy used to retrieve the information covered in printed paper. X-Ray Spectrometry, 2020, 49, 267-273.	1.4	3
65	Simulation of optical properties of ellipsoidal monocapillary X-ray optics with inner-surface imperfections. Optics Communications, 2021, 493, 127028.	2.1	3
66	Determination of Hepatic Iron Deposition in Drug-Induced Liver Fibrosis in Rats by Confocal Micro-XRF Spectrometry. ACS Omega, 2022, 7, 3738-3745.	3.5	3
67	Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 746, 33-38.	1.6	2
68	Application of a conic glass monocapillary in Beijing synchrotron radiation facility. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 754, 42-45.	1.6	1
69	Numerical design of polycapillary X-ray optics as both a focusing X-ray lens and a vacuum window. Vacuum, 2015, 121, 1-4.	3.5	1
70	Confocal three-dimensional micro X-ray fluorescence based on synchrotron radiation for mineral analysis. Spectroscopy Letters, 2017, 50, 545-549.	1.0	1
71	Development of a new X-ray scattering instrument based on two polycapillary X-ray optics. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 984, 164647.	1.6	1
72	A passive characterization method of the single-bounce ellipsoidal capillary for the full field transmission X-ray microscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1014, 165735.	1.6	1

#	Article	IF	CITATIONS
73	Full-field X-ray Nano-scope Developed at SSRF. Microscopy and Microanalysis, 2018, 24, 1012-1013.	0.4	Ο
74	Depth-sensitive analysis of metals to investigate the corrosion process in oil pipelines by confocal 3D-XRF and SEM-EDS. Nuclear Instruments & Methods in Physics Research B, 2020, 464, 111-116.	1.4	0
75	Poly-capillary x-ray collimating lens composed with channels of different diameters for medical imaging. , 2020, , .		Ο
76	A Procedure for the Characterization of Monocapillary X-Ray Lenses as Condensers for Full-Field Transmission X-Ray Microscopes. Frontiers in Physics, 2022, 10, .	2.1	0
77	Detailed Simulation of Single-Bounce Capillaries for Various X-Ray Sources. Frontiers in Physics, 0, 10,	2.1	Ο